信号处理算法
研技术
这个作者很懒,什么都没留下…
展开
-
数字信号处理-频率分辨率的两种解释
http://blog.sina.com.cn/s/blog_5f62d0dd0100f3s2.html解释一:频率分辨率可以理解为在使用DFT时,在频率轴上的所能得到的最小频率间隔f0=fs/N=1/NTs=1/T,其中N为采样点数,fs为采样频率,Ts为采样间隔。所以NTs就是采样前模拟信号的时间长度T,所以信号长度越长,频率分辨率越好。是不是采样点数越多,频率分辨力提高了呢?其实不是的,因为一段数据拿来就确定了时间T,注意:f0=1/T,而T=NTs,增加N必然减小Ts ,因此,增加N时f0是不变的原创 2020-12-23 20:26:05 · 4528 阅读 · 0 评论 -
matlab fitcsvm 中的box constraint的意义
https://ww2.mathworks.cn/matlabcentral/answers/367074-box-constraint-svm-mistake?w.mathworks.combox constraint可以看成是一个约束,这个值默认是1,这个值越小,则margin越大,说明在训练中允许的错误样本数越多,支持向量个数也越多,泛化能力越强。当这个值很大的时候,那么margin越小,支持向量的数目也越小,同时过拟合的风险也会增大...原创 2020-12-21 11:11:53 · 2698 阅读 · 0 评论 -
姿态解算 四元数、方向余弦、欧拉角、Mahony滤波、四轴
姿态解算 四元数、方向余弦、欧拉角、Mahony滤波说明:本文只是做了一些总结,需要一些对这方面的基础概念的了解。一般人千万不要试图去深入探讨四元数1. 方向余弦矩阵方向余弦矩阵是使用欧拉角(pitch,roll,yaw)对机体坐标系(b系)和地理坐标系(R系)的旋转的描述,也就是说,一个机体坐标系的向量,乘上这个方向余弦矩阵,就可以转化为一个地理坐标系的向量(对调也一样,就是这个意思)。也就是说方向余弦矩阵是对坐标系旋转的一种描述。方向余弦矩阵如下:其中,ψ是绕Z轴旋转的角,也是yaw角原创 2020-08-20 20:38:23 · 3829 阅读 · 1 评论 -
FIR与IIR滤波器的区别
1.两种滤波器都是数字滤波器。根据冲激响应的不同,将数字滤波器分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。对于FIR滤波器,冲激响应在有限时间内衰减为零,其输出仅取决于当前和过去的输入信号值。对于IIR滤波器,冲激响应理论上应会无限持续,其输出不仅取决于当前和过去的输入信号值,也取决于过去的信号输出值。2.FIR:有限脉冲响应滤波器。有限说明其脉冲响应是有限的。与IIR相比,它具有线性相位、容易设计的优点。这也就说明,IIR滤波器具有相位不线性,不容易设计的缺点。而另一方面,IIR却转载 2020-07-29 11:04:56 · 734 阅读 · 0 评论 -
雷达CFAR检测
非常简单直观地一篇文章,比起那些所谓的论文水平高多了https://www.cnblogs.com/Mufasa/p/10900334.html原创 2020-07-15 15:55:22 · 5312 阅读 · 0 评论 -
fir滤波器的最简单C语言实现
/*C语言实现FIR滤波器-时域暴力卷积方法y(n) = E(m=0->N-1) x(m)*h(n-m);p_input : 待滤波数据p_output : 滤波输出数据data_len : 数据长度p_fir_para : h(t)参数fir_para_len : h(t)长度*/void c_fir(float* p_input, float* p_output, uint16_t data_len, float* p_fir_para,uint16_t fir_para_len原创 2020-07-13 16:33:33 · 5733 阅读 · 0 评论