浮生烟雨
码龄7年
关注
提问 私信
  • 博客:116,489
    116,489
    总访问量
  • 10
    原创
  • 457,672
    排名
  • 21
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-09-26
博客简介:

weixin_40396948的博客

查看详细资料
个人成就
  • 获得62次点赞
  • 内容获得10次评论
  • 获得236次收藏
创作历程
  • 11篇
    2018年
TA的专栏
  • python 序列和数据框操作
    1篇
  • 数据结构 排序
    1篇
  • 关联规则挖掘
    1篇
  • 指数平滑预测
    1篇
  • python 集合操作
    1篇
  • python 集成学习
  • Adaboost 算法
    1篇
  • python 时间格式
    1篇
  • 神经网络
  • python 目录操作
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python getced() 和 chdir()解决工作空间不一致错误

有时候用python打开文件总是提示错误,是因为python的工作环境和你要打开的文件的不在一个目录下;因此要通过一些操作改变工作空间。import os  pwd= os.getcwd  #使用os.getcwd()可以获得当前的工作目录(current working directory)print(pwd)  #C:\Users\lenovo\Documents\pythonpath='C:...
原创
发布博客 2018.02.24 ·
1249 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

对池化层、ReLU函数、全连接层的理解

一、pooling层的作用      pooling主要是在用于图像处理的卷积神经网络中,但随着深层神经网络的发展,pooling相关技术在其他领域,其他结构的神经网络中也越来越受关注。      卷积神经网络中的卷积层是对图像的一个邻域进行卷积得到图像的邻域特征,亚采样层就是使用pooling技术将小邻域内的特征点整合得到新的特征。pooling确实起到了整合特征的作用。       pooli...
原创
发布博客 2018.02.23 ·
24374 阅读 ·
22 点赞 ·
0 评论 ·
60 收藏

python时间类型及其转换

1. 日期输出格式化 datetime => stringimport datetimenow = datetime.datetime.now()now.strftime('%Y-%m-%d %H:%M:%S')  输出'2015-04-07 19:11:21'strftime是datetime类的实例方法。 2. 日期输出格式化 string => datetim
原创
发布博客 2018.01.29 ·
593 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Adaboost算法

1
转载
发布博客 2018.01.21 ·
230 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习算法之集成学习

一、集成学习方法的思想       在机器学习问题中,对于一个复杂的任务来说,能否将很多的机器学习算法组合在一起,这样计算出来的结果会不会比使用单一的算法性能更好?这样的思路就是集成学习方法。       集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力。对于多个模型,如何组合这些模型,主要有以下几种不同的方法:在验证数据集上上找到表现最好的模型作
原创
发布博客 2018.01.21 ·
686 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python 的集合操作(set)

python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交), difference(差)和sysmmetric difference(对称差集)等数学运算.    set(可变集合)与frozenset(不可变集合)的区别:set无序排序且不重复,是可变的,有a
原创
发布博客 2018.01.19 ·
1938 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

指数平滑法(Exponential Smoothing,ES)预测

1、什么是指数平滑法    指数平滑法是生产预测中常用的一种方法。也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收
原创
发布博客 2018.01.19 ·
66936 阅读 ·
20 点赞 ·
6 评论 ·
161 收藏

关联规则挖掘

http://blog.csdn.net/sshhiixx/article/details/45113907https://www.cnblogs.com/qwertWZ/p/4510857.html一、Apriori算法Apriori原理是说如果某个项集是频繁的,那么它的所有子集也是频繁的。更常用的是它的逆否命题,即如果一个项集是非频繁的,那么它的所有超集也是非频繁的。支持度和置信度的计算方式:
原创
发布博客 2018.01.18 ·
1089 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

查找和排序

排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。         当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。   快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时
原创
发布博客 2018.01.18 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中pandas库中DataFrame操作

一、查看数据(查看对象的方法对于Series来说同样适用)1.查看DataFrame前xx行或后xx行a=DataFrame(data);a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。2.查看DataFrame的index,columns以及values
原创
发布博客 2018.01.17 ·
11515 阅读 ·
8 点赞 ·
0 评论 ·
37 收藏

哈希算法和哈希学习分类

哈希1.先来了解一下Hash的基本思路:设要存储对象的个数为num, 那么我们就用len个内存单元来存储它们(len>=num); 以每个对象ki的关键字为自变量,用一个函数h(ki)来映射出ki的内存地址,也就是ki的下标,将ki对象的元素内容全部存入这个地址中就行了。这个就是Hash的基本思路。Hash为什么这么想呢?换言之,为什么要用一个函数来映射出它们的地址单元呢?Th
原创
发布博客 2018.01.17 ·
7168 阅读 ·
12 点赞 ·
4 评论 ·
33 收藏