Python pandas.DataFrame.idxmax函数方法的使用

idxmax函数方法的使用

DataFrame.idxmax(self, axis=0, skipna=True)  

返回在请求轴上第一次出现最大值的索引。不包括NA/null。

参数说明
axis{0或’index’,1或’columns’},默认0;
skipnabool, default True。排除NA / null值。如果整个行/列是NA,结果将是NA。
return沿指定轴的最大值索引。

考虑一个包含阿根廷食品消费的数据集。

df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
                   'co2_emissions': [37.2, 19.66, 1712]},
                   index=['Pork', 'Wheat Products', 'Beef'])
df
'''
                consumption  co2_emissions
Pork                  10.51         37.20
Wheat Products       103.11         19.66
Beef                  55.48       1712.00
'''

默认情况下,它返回每列中最大值的索引。

df.idxmax()
'''
consumption     Wheat Products
co2_emissions             Beef
dtype: object
'''

若要返回每行中最大值的索引,请使用axis=“columns”。

df.idxmax(axis="columns")
'''
Pork              co2_emissions
Wheat Products     consumption
Beef              co2_emissions
dtype: object
''    '
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值