【机器学习实战】利用KNN和其他分类器对手写数字进行识别

一、在sklearn中创建KNN分类器

KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30)

看一下这几个参数

1. n_neighbors:即 KNN 中的 K 值,代表的是邻居的数量。如果K 值比较小,会造成过拟合;如果 K 值比较大,无法将未知物体分类出来。一般我们使用默认值 5。

2. weights:是用来确定邻居的权重,有两种方式:

  1. weights=‘uniform’,代表所有邻居的权重相同;
  2. weights=‘distance’,代表权重是距离的倒数,即与距离成反比。

3. algorithm:用来规定计算邻居的方法,它有四种方式:

  1. algorithm=‘auto’,根据数据的情况自动选择适合的算法,默认情况选择 auto;
  2. algorithm=‘kd_tree’,也叫作 KD 树,是多维空间的数据结构,方便对关键数据进行检索,不过 KD 树适用于维度少的情况,一般维数不超过 20,如果维数大于 20 之后,效率反而会下降;
  3. algorithm=‘ball_tree’,也叫作球树,它和 KD 树一样都是多维空间的数据结果,不同于 KD 树,球树更适用于维度大的情况;
  4. algorithm=‘brute’,也叫作暴力搜索,它和 KD 树不同的地方是在于采用的是线性扫描,而不是通过构造树结构进行快速检索。当训练集大的时候,效率很低。

4.leaf_size:代表构造 KD 树或球树时的叶子数,默认是 30,调整 leaf_size 会影响到树的构造和搜索速度。

创建完 KNN 分类器之后,我们就可以输入训练集对它进行训练,这里我们使用 fit() 函数,传入训练集中的样本特征矩阵和分类标识,会自动得到训练好的 KNN 分类器。然后可以使用 predict() 函数来对结果进行预测,这里传入测试集的特征矩阵,可以得到测试集的预测分类结果。

二、工作流程

我们用 sklearn 自带的手写数字数据集做 KNN 分类,你可以把这个数据集理解成一个简版的 MNIST 数据集,它只包括了 1797 幅数字图像,每幅图像大小是 8*8 像素。

先划分一下流程:

整个训练过程基本上都会包括三个阶段:

  1. 数据加载:直接从 sklearn 中加载自带的手写数字数据集;
  2. 准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可
  3. 分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

三、实战环节

1.导包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_digits
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import AdaBoostClassifier

from sklearn.metrics import accuracy_score

2.加载数据并探索

# 加载数据
digits = load_digits()
data = digits.data

# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])

# 将第一幅图像显示出来
plt.imshow(digits.images[0])
plt.show()

输出:

(1797, 64)
[[ 0.  0.  5. 13.  9.  1.  0.  0.]
 [ 0.  0. 13. 15. 10. 15.  5.  0.]
 [ 0.  3. 15.  2.  0. 11.  8.  0.]
 [ 0.  4. 12.  0.  0.  8.  8.  0.]
 [ 0.  5.  8.  0.  0.  9.  8.  0.]
 [ 0.  4. 11.  0.  1. 12.  7.  0.]
 [ 0.  2. 14.  5. 10. 12.  0.  0.]
 [ 0.  0.  6. 13. 10.  0.  0.  0.]]
0

我们对原始数据集中的第一幅进行数据可视化,可以看到图像是个 8*8 的像素矩阵,上面这幅图像是一个“0”,从训练集的分类标注中我们也可以看到分类标注为“0”。

3.分割数据集并规范化

sklearn 自带的手写数字数据集一共包括了 1797 个样本,每幅图像都是 8*8 像素的矩阵。因为并没有专门的测试集,所以我们需要对数据集做划分,划分成训练集和测试集。因为 KNN 算法和距离定义相关,我们需要对数据进行规范化处理,采用 Z-Score 规范化,代码如下:

# 数据及目标
data1 = digits.data
target1 = digits.target

# 分割数据,将25%的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data1, target1, test_size=0.25)

# 采用z-score规范化
ss = StandardScaler()
train_ss_scaled = ss.fit_transform(train_x)
test_ss_scaled = ss.transform(test_x)

# 采用0-1归一化
mm = MinMaxScaler()
train_mm_scaled = mm.fit_transform(train_x)
test_mm_scaled = mm.transform(test_x)

这里之所以用了0-1归一化,是因为多项式朴素贝叶斯分类这个模型,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到[0,1]范围内。

4.建立模型,并进行比较

这里构造五个分类器, 分别是K近邻,SVM, 多项式朴素贝叶斯, 决策树模型, AdaBoost模型。并分别看看他们的效果。

models = {}
models['knn'] = KNeighborsClassifier()
models['svm'] = SVC()
models['bayes'] = MultinomialNB()
models['tree'] = DecisionTreeClassifier()
models['ada'] = AdaBoostClassifier(base_estimator=models['tree'], learning_rate=0.1)

for model_key in models.keys():
    if model_key == 'knn' or model_key == 'svm' or model_key == 'ada':
        model = models[model_key]
        model.fit(train_ss_scaled, train_y)
        predict = model.predict(test_ss_scaled)
        print(model_key, "准确率:", accuracy_score(test_y, predict))
    else:
        model = models[model_key]
        model.fit(train_mm_scaled, train_y)
        predict = model.predict(test_mm_scaled)
        print(model_key, "准确率: ", accuracy_score(test_y, predict))

输出:

knn 准确率: 0.9777777777777777
svm 准确率: 0.9866666666666667
bayes 准确率:  0.8888888888888888
tree 准确率:  0.8444444444444444
ada 准确率: 0.8355555555555556

你能看出来 KNN 的准确率还是不错的,和 SVM 不相上下。并且竟然比AdaBoost效果都要好,而让我纳闷的是决策树和AdaBoost怎么效果这么差,不可思议。后来我发现了,原来是样本数量的问题,我们最多数据集才1000多照片,数量太少了,AdaBoost的作用发挥不出来,所以我对数据进行扩增,复制了三遍原来的数据:

data2 = np.vstack((data1, data1, data1))
target2 = np.hstack((target1, target1, target1))

变成了5000多张数据,然后再进行测试,结果就是AdaBoost和tree的效果提升了,甚至可以和SVM效果媲美了。

输出:

knn 准确率: 0.9821958456973294
svm 准确率: 0.9970326409495549
bayes 准确率:  0.9013353115727003
tree 准确率:  0.9955489614243324
ada 准确率: 0.9933234421364985

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值