大模型应用开发初探 : 基于Coze创建Agent

大家好,我是Edison。

最近学习了一门课程《AI Agent入门实战》,了解了如何在Coze平台上创建AI Agent,发现它对我们个人(C端用户)而言十分有用,分享给你一下。

Coze是什么?

Coze(扣子)是字节跳动公司开发的新一代AI应用开发平台,使用这个AI应用开发平台,无论你是否有编码基础,都可以快速搭建基于大语言模型的各类AI Bot,还可以将Bot发布到其他渠道。对于一个AI Agent而言,最重要的能力就是任务规划、调用工具、知识库 和 记忆能力,而这些能力在Coze中你都不需要关注,已经封装好了提供给你,对你而言就是透明的。

如上图所示,我们可以对我们要做的AI Agent先设立人设,然后给它注册想要调用的工具或工作流,还可以给它注册一个内部知识库(文档/图片/表格等),如果想要记忆能力甚至可以直接给它添加一个数据库供其使用,最后再通过调试模块进行测试,一个针对AI Agent的“宇宙最强IDE“也不过如此。
目前,Coze有两个版本:

(1)基础版:面向尝鲜体验的个人和企业开发者,全部功能免费使用,但有一定的限量额度,超过后不可再使用,需切换专业版后继续使用。

(2)专业版:面向对稳定性和用量有更高需求的专业开发者,支持更高团队空间容量和免费知识库容量,付费功能保障专业级 SLA,不限制调用请求频率和总量,费用按实际用量计算。

这里,我用的是基础版,主要是尝尝鲜,做了几个DEMO体验下效果,用到的模型主要是豆包的Function Call模型。未来,我们可能会主要尝试企业内部搭建的FastGPT或Dify,又或者是微软的AutoGen。

下面,主要通过我做的这几个DEMO一起来看看Coze提供的一些关键能力。

强大的工作流配置

我通过Coze创建了一个城市天气助手的Bot,使用了Coze提供的工作流能力,如下图所示,这是一个获取天气预报并解析的工作流:

可以看到,通过一个简单的工作流,我们就快速调用了大模型 和 插件(墨迹天气)的能力,而这些操作在传统的编码场景下,都需要程序员单独来处理,现在则是0代码纯配置就可以了。

基于这个工作流,我再把人设和回复的逻辑配置一下提示词,就可以完成一个Bot的创建。值得一提的是,针对你的提示词,Coze提供了一个优化的功能,可以按照最佳实践将你的提示词做一个优化,这真的是一个很实用的功能。

最后实现的效果如下图所示:

强大的图像流配置

我通过Coze创建了一个产品图背景替换助手的Bot,用到了Coze提供的另一个强大技能:图像流。这也是一个工作流,但是其用到了专门针对图像处理的处理节点,例如图像生成、背景替换、画质提升等等。这些功能对于有做社交媒体运营的朋友,应该挺有帮助的。

最后的效果如下图所示:我把原图 和 想要替换的背景描述给它,它给我输出了一张还算不错的背景替换图。

快捷的知识库应用

Coze支持不同格式的知识库,例如文本类型(如txt, pdf, doc等)、表格类型(如xls等)以及 照片类型(如png, jpg等)。

比如,我创建了一个MongoDB知识助手的Bot,就导入了一些MongoDB的体系课程的pdf文档:

最终的效果如下图所示:

又如,我创建了一个产品图查询助手的Bot,可以基于我导入的产品图资料库,让我可以快速的查找到对应的产品图。

效果如下图所示:

再如,假设我是一个在线课堂的老板,我将课程订单表(Excel)导入到知识库中,通过对人设和回复逻辑的设置,就可以实现一个快速查询的功能:

透明的记忆能力

假设我是一个在线课堂的老板,我可以用Coze创建一个在线客服,让它和客户对话,并试图引导用户留下姓名和联系方式,这就需要一个类似于数据库的记忆能力。

这样配置后,一旦客户在对话中留下联系方式,我们的Bot就会自动将其存入预先设置的数据库中:

其他能力

对于客服类Bot,语音能力是非常重要的,在Coze中可以支持语音通话,还有多种口音供选择,个人觉得这是很方便的一个支持能力。

发布到订阅号

Coze可以支持发布到多个平台,未来可能真的会有Agent Store的概念。不过,我目前最喜欢的还是可以直接发布到微信订阅号,这样大家在给我回复时,不只是有冷冰冰的自动回复,而是有情绪价值的回复,for all of you!

小结

本文简单介绍了Coze(扣子)这个AI应用开发平台的主要功能,通过我所学习实践的一些DEMO来了解一下在AI Agent开发中涉及到一些核心概念如工作流、图像流、记忆能力、知识库等等,相信会对大家在今后的AI Agent开发实践中有所帮助。

推荐学习

周文洋,《AI Agent入门实战》

 

原创作者: edisonchou 转载于: https://www.cnblogs.com/edisonchou/p/18452170/quick-start-on-ai-agent-by-coze
### 使用Coze框架创建应用程序 对于构建基于检索增强生成的应用程序而言,使用特定框架如Coze可以极大简化开发流程并提高效率。然而,在提供的参考资料中并未提及有关Coze的具体实现细节[^1]。 通常情况下,要利用像Coze这样的框架来建立新应用,开发者应当遵循官方文档指导完成环境配置、依赖安装以及核心功能模块的设计与集成工作。考虑到资料局限性,建议访问该项目主页或GitHub仓库获取最新版的快速入门指南和API说明文件[^2]。 尽管无法提供针对Coze的确切代码实例,这里给出一个通用的应用搭建思路: #### 安装准备 确保本地已安装Python解释器及相关虚拟环境管理工具(venv),接着通过pip命令下载必要的库包: ```bash $ python -m venv myenv $ source myenv/bin/activate # Windows下应执行 `myenv\Scripts\activate.bat` (myenv)$ pip install coze-framework==latest_version_number ``` #### 创建项目结构 定义清晰合理的目录布局有助于后续维护扩展,推荐采用如下模式: ``` project_root/ │── app.py # 主入口脚本 ├── config.py # 配置参数设置 └── requirements.txt # 记录所有外部依赖项版本号 ``` #### 编写业务逻辑 依据实际需求编写处理函数,并将其挂载到路由上供前端调用。下面是一个简单的Flask风格视图示例: ```python from flask import Flask, jsonify import coze app = Flask(__name__) @app.route('/api/generate', methods=['POST']) def generate_text(): input_data = request.json.get('input') try: result = coze.generate(input_data) return jsonify({'output': result}), 200 except Exception as e: return str(e), 500 if __name__ == '__main__': app.run(debug=True) ``` 请注意上述仅为示意性质的内容展示,具体实现需参照目标平台特性调整语法表达方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值