文本检测算法:PSENet:Shape Robust Text Detection with Progressive Scale Expansion Network

PSENet是一种创新的文本检测算法,基于分割和内核扩展,能精确检测任意形状的文本实例,尤其擅长处理密集和曲线文本,通过渐进式比例扩展算法有效分离相邻文本。

PSENet:Shape Robust Text Detection with Progressive Scale Expansion Network

 

一、现状:文本检测的主流方法:基于回归(regression-based)、基于分割(segmentation-based)。

基于回归(regression-based)的方法通常基于通用对象检测框架,例如Faster R-CNN [31]和SSD [22]。 TextBoxes [19]修改了卷积核的锚定比例和形状,以适应文本的各种纵横比。 EAST [42]使用FCN [25]直接预测每个像素的得分图,旋转角度和文本框。 RRPN [28]采用了Faster R-CNN,并提出了RPN部分的旋转建议以检测任意方向的文本。 RRD [20]从两个单独的分支中提取了用于文本分类和回归的特征图,以更好地检测长文本。但是,大多数基于回归的方法通常需要复杂的锚设计和繁琐的多个阶段,这可能需要详尽的调整并导致次优性能。 此外,上述论文是专为多种方向的文本检测而设计的,在处理实际在实际场景中广泛分布的曲线文本时可能会不足。

 

基于分割(segmentation-based)的方法主要受全卷积网络(FCN)的启发[25]。 Zhang等[39]首先采用FCN提取文本块,并通过MSER从这些文本块中检测字符候选。 Yao等[38]将一个文本区域表示为多种属性,例如文本区域和方向,然后利用FCN预测相应的热图。 Lyu等人[27]利用角点定位为文本实例找到合适的不规则四边形。 PixelLink [4]通过预测不同文本实例之间的像素连接来分离彼此靠近的文本。 最近,TextSnake [26]使用有序磁盘来表示曲线文本以进行曲线文本检测。 SPCNet使用实例分割框架并利用上下文信息来检测任意形状的文本,同时抑制误报。

 

二、文本检测面对的挑战:

(1)大多数现有的算法都是四边形边界框,而四边形边界框对于定位具有任意形状的文本并不准确;(基于回归算法面临的挑战)

(2)彼此靠近的两个文本实例可能相互覆盖,而导致错误检测(基于分割面对挑战)。如图1所示,

三、传统的基于分割的算法<

"Progressive"通常指的是进步主义(Progressivism),它是一系列政治思想和政策,旨在通过改革社会经济不平等、促进公平和提升公众福利来推动社会进步。这种理念在不同历史时期和文化背景下有不同的具体表现,但核心关注点往往包括: ### 政治与社会方面 - **民主扩展**:主张扩大选举权,特别是给予女性、少数族裔和其他此前被排除在外群体的权利。 - **劳动权益保护**:支持劳工组织和立法,以改善工人条件和待遇。 - **教育普及化**:强调公共教育的重要性,致力于提高教育质量并使更多人能够接受教育。 ### 经济方面 - **反垄断措施**:反对大企业垄断市场,提倡竞争以维护消费者利益和社会公正。 - **税收和福利政策**:支持累进税制,即高收入者承担更高的税率,用于资助社会保障项目如医疗保健、失业救济和贫困援助计划。 - **环境保护**:倡导可持续发展,限制污染和自然资源的过度开发。 ### 具体实例 #### 进步主义运动(美国) - **罗斯福新政**:20世纪30年代美国总统富兰克林·德拉诺·罗斯福实施的一系列经济和社会改革措施,旨在应对大萧条带来的危机,包括建立社会保障体系、增加联邦政府对经济的干预以及推行环境保护政策。 #### 社会保障制度 - **社会保险**:如养老金计划、医疗保险,通过政府和雇主共同承担费用,为公民提供基本生活保障。 #### 教育改革 - 提倡公共学校系统的改进,包括标准化测试、师资培训和教育资源均等分配,以确保所有学生都能获得高质量的教育。 ### 相关问题: 1. 如何衡量一个国家或地区的进步主义程度? 2. 进步主义如何在全球化时代适应新的挑战? 3. 当代社会中有哪些具体的政策体现了进步主义的理念?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DYF-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值