PRID
哗啦呼啦嘿
这个作者很懒,什么都没留下…
展开
-
Pytorch-maskrcnn(seg)前景分割
近来在学习图像分割的相关算法,准备试试看Mask R-CNN的效果。关于Mask R-CNN的详细理论说明,可以参见原作论文https://arxiv.org/abs/1703.06870,网上也有大量解读的文章。本篇博客主要是参考了PyTorch官方给出的训练教程,将如何在自己的数据集上训练Mask R-CNN模型的过程记录下来,希望能为感兴趣的读者提供一些帮助。PyTorch官方教程(...转载 2020-03-20 23:27:17 · 2057 阅读 · 1 评论 -
PRID-Market1501 Baeline(Rank1-Rank10图片显示)
import visdomimport timeimport datetimeimport osimport torch as timport numpy as npimport matplotlib.pyplot as pltfrom util.Data import Dataimport torchimport modelsfrom util.utils import e...原创 2019-08-13 15:26:55 · 1045 阅读 · 0 评论 -
PRID-分类文件夹
import osimport shutilimport numpy as npdataset = 'E:/gyx/Paper/PRID/code/MGCAM-master/data/chuk03-np/cuhk03-np/detected' #'cuhk03-np/labeled' or 'cuhk03-np/detected', cuhk03-np can be download ...转载 2019-04-02 11:37:32 · 488 阅读 · 0 评论 -
PRID-理解add和concat之多层特征融合
一、如何理解concat和add的方式融合特征在各个网络模型中,ResNet,FPN等采用的element-wise add来融合特征,而DenseNet等则采用concat来融合特征。那add与concat形式有什么不同呢?事实上两者都可以理解为整合特征图信息。只不过concat比较直观,而add理解起来比较生涩。从图中可以发现,concat是通道数的增加; add是特征...转载 2019-04-10 20:28:56 · 7526 阅读 · 3 评论 -
如何基于gluon训练一个强有力的Reid Baseline
这两年,行人再识别得到很多关注,仅cvpr 2018上,就录取了31篇文章。本文主要是对行人再识别的Baseline做一个总结、整理和改进,最终在market1501数据集上达到93.1的rank1和80.3的mAP,该Baseline已经超越2018年大多数顶会录取文章的性能。在实验中,以resnet50作为backbone,损失函数采用单个softmax loss。我们希望这个Baseline...转载 2019-03-27 17:18:14 · 686 阅读 · 0 评论 -
行人重识别-code
https://www.zhihu.com/question/46943328?sort=createdhttps://blog.csdn.net/qq_21997625/article/details/80937939原创 2019-02-24 22:32:32 · 479 阅读 · 0 评论 -
图像语义分割(semantic segmentation)
本文对图像语义分割近年来的主要发展做一个综述性的介绍。翻译了以下两篇博文,并进行了整合。https://www.jeremyjordan.me/semantic-segmentation/ http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review转载地址:https://blog.csdn.net/Bi...转载 2019-01-02 16:47:49 · 5676 阅读 · 0 评论 -
Transposed Convolution, Fractionally Strided Convolution or Deconvolution
反卷积(Deconvolution)的概念第一次出现是Zeiler在2010年发表的论文Deconvolutional networks中,但是并没有指定反卷积这个名字,反卷积这个术语正式的使用是在其之后的工作中(Adaptive deconvolutional networks for mid and high level feature learning)。随着反卷积在神经网络可视化上的...转载 2018-12-11 20:38:14 · 193 阅读 · 0 评论 -
Convolutional Pose Machine
博客:https://blog.csdn.net/cherry_yu08/article/details/80846146https://blog.csdn.net/qq_36165459/article/details/78321054https://blog.csdn.net/mpsk07/article/details/79522809https://blog.csdn.ne...原创 2018-11-26 21:13:34 · 464 阅读 · 0 评论 -
PRID:行人重识别常用评测指标(rank-n、Precision & Recall、F-score、mAP 、CMC、ROC)
1、rank-n搜索结果中最靠前(置信度最高)的n张图有正确结果的概率。例如: lable为 m1,在100个样本中搜索。如果识别结果是 m1、m2、m3、m4、m5……,则此时rank-1的正确率为100%;rank-2的正确率也为100%;rank-5的正确率也为100%;如果识别结果是 m2、m1、m3、m4、m5……,则此时rank-1的正确率为0%;rank-2的正确率为...转载 2018-10-17 11:24:09 · 17852 阅读 · 1 评论 -
基于深度学习的行人重识别研究综述
前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术...转载 2018-10-17 09:40:12 · 737 阅读 · 0 评论 -
PRID:行人重识别学习视频
视频1: https://edu.csdn.net/course/play/8426?s=all视频2: https://www.bilibili.com/video/av13796843/oudao.com/视频3: http://www.mooc.ai/course/381/learn#lesson/2161转载 2018-10-17 15:11:09 · 1247 阅读 · 0 评论