Scikit-learn随机森林算法库总结与调参实践

        上篇我们对随机森林的算法原理进行了探讨,以及算法的优缺点进行了总结。我们知道随机森林是在bagging框架下,组合多颗随机特征生成的CART树形成随机森林,是一种非常强大的算法。本篇我们就来探讨Scikit-learn中随机森林库类的使用。按照以往的套路,我们先对随机森林库进行概述,再对常用参数进行解读,最后我们使用kaggle上面的一个数据对随机森林的调参进行全面的演示。

1)随机森林库类概述

        随机森林算法即可以做分类,又可以做回归。在Scikit learn中,随机森林分类对应是RandomForestClassifer库类,回归则是对应RandomForestRegressor库类。两者的具体参数如下:

       sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion=‘gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=‘auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)[source]

       sklearn.ensemble.RandomForestRegressor(n_estimators=100, criterion=‘mse’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=‘auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)[[source]]
        可以看出,RandomForestClassifier和RandomForestRegressor绝大多数参数都相同,不同之处在于,RandomForestClassifier多了一个类别不平衡的参数:class_weight。

        不管是RandomForestClassifier还是RandomForestRegressor,其参数都可以分为两部分,第一部分是随机森林框架参数,如n_estimators,oob_score;第二部分是CART树参数,如max_depth,criterion等。下面我们就分部分来进行介绍。

2)随机森林框架参数

  • n_estimators,树的数量,默认100(0.22版本改成了100);
            该参数主要用于降低整体模型的方差。当n_estimators增大模型方差降低,整体模型的准确度会有所提升,直到增加到一定的值,不再发生显著变化。实际应用中,不一定需要选择最优的n_estimators(n_estimators越大,时间成本越高),可以根据自己电脑的运算能力,选择适中的值,然后把算力放到调整其他超参数上。

  • oob_score,是否采用Out of Bag评估方式,默认False;
            oob_score是我们在随机森林原理中提到的Out of Bag评估方式。Out of Bag可以反应了模型的泛化能力,oob_score=True等同于使用交叉验证评估模型。实际应用中,设置成True。袋外数据评估得分通过oob_score_属性查看。

  • bootstrap,是否采用有放回的采样方式,默认True;
            bootstrap,有放回采样,可以增加训练集的多样性,实际应用中,保持默认设置。

  • max_samples,训练树的最大样本量,默认为None;
            当boostrap=True时,该参数才起作用,表示从训练集中抽取多少样本去训练子模型。新版本0.22新增参数。

3)CART树参数

        剩下的参数则是CART树的参数,和我们之前探讨的决策树参数含义基本一样,下面我们看下常用的一些参数,其他的参数可以参考Scikit-learn决策树算法库总结与简单实践

  • criterion,不确定性的计算方式;
            分类树和回归树的损失函数不一样,不确定性的计算方式也不一样。RandomForestClassifier默认Gini,也可以输入entropy。RandomForestRegressor默认为均方差mse,也可以输入绝对值差mae。在绝大多数情况下,两者没有显著差别,实际应用中,优先考虑保持默认设置。

  • max_features,训练树的最大特征数,默认为auto;
           该参数用来限制树过拟合的剪枝参数。max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。适当的减少输入模型的特征可以增加基学习器的多样性,当然也可能会存在模型欠拟合的风险。默认为auto时,表示选择的特征数为 f e a t u r e s \sqrt {features} features 。实际应用中,可以在默认auto的基础上增大该参数,验证模型是否欠拟合。

  • max_depth,树的最大深度,默认为None;
            该参数用来限制树过拟合的剪枝参数,超过指定深度的树枝全部被剪掉。当默认为None时,树将自由生长直到达到停止条件。树越深,模型的偏差越低,方差越高。

  • min_samples_split,内部节点分裂的最小样本数,默认为2;
            该参数用来限制树过拟合的剪枝参数。如果叶节点样本数目小于该参数的值,叶节点将会被剪枝。min_samples_split越大,被剪枝的越多,树越简单,模型偏差越高,方差越低。

  • min_samples_leaf,叶节点的最小样本数,默认为1;
            该参数用来限制树过拟合的剪枝参数。如果叶节点样本数目小于该参数的值,叶节点将会被剪枝。min_samples_leaf越大,被剪枝的越多,树越简单,模型偏差越高,方差越低。

  • max_leaf_nodes,最大叶节点数,默认为None;
            该参数用来限制树过拟合的剪枝参数。默认是None,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。max_leaf_nodes越大,树越复杂,模型偏差越低,方差越高。

4)随机森林算法库使用经验总结

  • 使用grid_search和交叉验证选择最优的超参数。
  • 通常,随机森林参数的调整顺序为:n_estimators,max_features,max_depth,min_samples_split,min_samples_leaf。
  • max_features可以粗粒度地调整树的结构,搜索空间可以大一些;min_samples_split,min_samples_leaf可以更细粒度地调整树的结构,搜索空间可以更细一些。
  • 使用随机森林的feature_importances_查看特征重要性。

5)调参实践

        下面我们使用kaggle比赛的Give Me Some Credit数据,使用网格搜索的方式演示随机森林的调参过程,同时更直观的理解各超参数对模型的偏差和方差的影响。
        代码和数据已上传到我的GitHub,大家可以去下载,自己跑一遍。下面我们对数据进行简单的处理,演示随机森林的调参过程。
       首先导入所需要的Python包

import pandas as pd
import numpy as np

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn import metrics

import matplotlib.pyplot as plt
import matplotlib as mpl

import warnings
warnings.filterwarnings("ignore")

       读入数据,查看数据的基本信息。

#读取数据
path = r'.\cs-training.csv'
data = pd.read_csv(path)
data.head()

在这里插入图片描述

data.shape

在这里插入图片描述

#数据集基本信息
data.info()

在这里插入图片描述
       查看目标变量的分布,以及缺失值情况。

#样本不平衡
data['SeriousDlqin2yrs'].value_counts()

在这里插入图片描述

#缺失值所占比例
data.isnull().sum()/data.shape[0]

在这里插入图片描述
       正负样本极其不平衡,我们使用class_weight =‘balanced’增加正样本的权重。
       缺失值比例不高,使用均值和中位数对缺失值进行填充。

#使用均值和中位数进行缺失值填充
data['MonthlyIncome'].fillna
  • 10
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值