量价因子之alpha001

本文详细介绍了量价特征因子alpha001的逻辑,包括对成交量和价格变动的量化处理,以及使用Python实现的代码示例。通过回测数据,展示了因子与收益的相关性。重点在于量幅背离策略的应用和理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章

量价特征因子的量化分析
量价因子之前言



说明

关于本系列文章的背景、引用报告、因子表达式中的变量、函数、回测等说明,请参考:量价因子之前言

一、alpha001因子逻辑表达式

(-1 * CORR(RANK(DELTA(LOG(VOLUME), 1)), RANK(((CLOSE - OPEN) / OPEN)), 6))

理解:
1.RANK(DELTA(LOG(VOLUME), 1)),对成交量取对数后,进行1个交易日的差分,再排序。相当于对成交量的变化的量化,放量或缩量。
2.RANK(((CLOSE - OPEN) / OPEN)),相对于当日开盘价的当日涨幅,排序。
3.求上述1和2的过去6个交易日的相关系数,取负号。
4.考虑了量、幅的量化因子之一。

二、因子Python实现

Python代码如下(示例):

import numpy as np
import pandas as pd

def alpha191_001(data, corr_period=6)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值