量价因子之前言

本文基于国泰君安的Alpha191因子系统,研究了交易型阿尔法在A股市场的优势,通过量化方法提取有效因子并进行代码实现。作者通过T+2交易日换仓策略分析因子收益,强调量化之美和实用性,但仅为个人学习笔记,非投资建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本系列文章基于国泰君安量化专题研究报告 ——《基于短周期价量特征的多因子选股体系》给出的 191 个短周期交易型阿尔法因子,业内人称alpha191。Alpha191应该算是业内比较早的(2017年6月发布)、专门针对股票alpha策略设计的一批因子,在学术和实操都有很高的价值。

它提供了一套科学量化的因子发现/描述的方法,从简简单单的Open/High/Low/Close/Volume等数据提炼出有效因子,是一件需要创造性和艺术性的工作,让人感受到了——量化之美。

在 A 股市场,通过对短周期交易型阿尔法(技术派)的研究,与传统多因子模型所获取的股票价值阿尔法(价值派)收益相比,交易型阿尔法收益有它自身的优势,比如空间更大、收益稳定性更强。从实用主义角度来说,不管是短周期交易型阿尔法,还是传统多因子阿尔法,只要能抓到老鼠的就是好猫。

本系列文章将基于alpha191,结合自身多年量化经验,对191个因子重新进行分析、代码实现、总结,感受量化之美。

量价变量说明

所有量价分析都是基于如下量价变量

变量定义
OPEN开盘价
HIGH最高价
LOW最低价
CLOSE收盘价
VWAP均价
VOLUME成交量
AMOUNT成交额

函数说明

函数定义
CORR(A, B, n)序列 A、B 过去 n 天相关系数
RANK(A)向量 A 升序排序
DELTA(A, n)Ai - A i-n
LOG(A)自然对数函数
TSRANK(A, n)序列 A 的末位值在过去 n 天的顺序排位
TSMAX(A, n)序列 A 过去 n 天的最大值
TSMIN(A, n)序列 A 过去 n 天的最小值

定义回测收益:

如alpha191报告提到到的,T+2交易日换仓回测的结果最优,T+2这里也体现了短周期。
我们设计T+2 交易日换仓,实际策略中可以自行定义换仓频率,这里仅以此作为回测分析。
假设以T+1日的开盘价买入,T+2日的收盘价卖出,来计算因子收益,即:

GAIN = (CLOSET+2 - OPENT+1) / OPENT+1

代码如下(示例):

data = pd.read_csv('stock_data.csv')
data['gain'] = data.shift(-2)['close'] / data.shift(-1)['open'] - 1

data:
在这里插入图片描述

最后

本系列文章只做个人学习笔记,记录想法,不作为任何投资建议。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值