引入问题
- 修路问题
- 图中有7个村庄(A,B,C,D,E,F,G),现在需要修路把7个村庄连通
- 各个村庄的距离用边线表示(权),比如A - B相距5公里
- 问:如何修路保证各个村庄都能连通,并且总的修建公路里程最短
- 思路:尽可能选择少的路线,并且每条路线最小,保证总里程数最小
最小生成树
- 修路问题的本质就是最小生成树问题,先介绍一下最小生成树**(Minimum Cost Spanning Tree),简称MST**
- 给定一个带权的无向连通图,如何选取一棵生成树,使得树所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在途中
- 求最小生成树的算法主要就是普利姆算法和克鲁斯卡尔算法
普利姆算法介绍
- 普利姆算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有n-1条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
- 普利姆算法如下:
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
- 若集合U中顶点u[i]与集合V-U中的顶点v[i]之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点v[j]加入集合U中,将边(u[i],v[j])加入集合D中,标记visited[v[j]=1
- 重复步骤4,直到U与V想等,即所有顶点都被标记为访问过,此时D中有n-1条边
图解
- 代码中我们从顶点A开始构造最小生成树
- 经过if(visited[i]==1&&visited[j]==0&&myGraph.weight[i][j]<minWeight)多次判断后,我们找到最小边<A,G>(从<A,B>、<A,C>、<A,G>中选择)
- 接下来在<A,B>、<A,C>、<G,B>、<G,E>,<G,F>,<G,B>中,我们选择最小边<G,B>
- 之后每一次,我们都在寻找集合U与集合V-U中权值最小的边。
代码实现
public class Prim {
public static void main(String[] args) {
int block = Integer.MAX_VALUE;
char[] data = {
'A','B','C','D','E','F','G'};
int nodes = data.length;
int[][] weight = {
{
block,5,7,block,block,block,2},
{
5,block,block