Java实现普利姆算法(Prim)图解

本文介绍了如何使用Java实现普利姆算法求解最小生成树问题,通过修路问题引出最小生成树的概念,详细解析了普利姆算法的步骤,并提供了具体的代码实现。
摘要由CSDN通过智能技术生成

引入问题

  • 修路问题
    在这里插入图片描述
  1. 图中有7个村庄(A,B,C,D,E,F,G),现在需要修路把7个村庄连通
  2. 各个村庄的距离用边线表示(权),比如A - B相距5公里
  3. 问:如何修路保证各个村庄都能连通,并且总的修建公路里程最短
  4. 思路:尽可能选择少的路线,并且每条路线最小,保证总里程数最小

最小生成树

  • 修路问题的本质就是最小生成树问题,先介绍一下最小生成树**(Minimum Cost Spanning Tree),简称MST**
  1. 给定一个带权的无向连通图,如何选取一棵生成树,使得树所有边上权的总和为最小,这叫最小生成树
  2. N个顶点,一定有N-1条边
  3. 包含全部顶点
  4. N-1条边都在途中
  5. 求最小生成树的算法主要就是普利姆算法和克鲁斯卡尔算法

普利姆算法介绍

  1. 普利姆算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有n-1条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
  2. 普利姆算法如下:
  3. 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
  4. 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
  5. 若集合U中顶点u[i]与集合V-U中的顶点v[i]之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点v[j]加入集合U中,将边(u[i],v[j])加入集合D中,标记visited[v[j]=1
  6. 重复步骤4,直到U与V想等,即所有顶点都被标记为访问过,此时D中有n-1条边

图解

  1. 代码中我们从顶点A开始构造最小生成树
  2. 经过if(visited[i]==1&&visited[j]==0&&myGraph.weight[i][j]<minWeight)多次判断后,我们找到最小边<A,G>(从<A,B>、<A,C>、<A,G>中选择)
  3. 接下来在<A,B>、<A,C>、<G,B>、<G,E>,<G,F>,<G,B>中,我们选择最小边<G,B>
  4. 之后每一次,我们都在寻找集合U与集合V-U中权值最小的边。

在这里插入图片描述

代码实现

public class Prim {
   

    public static void main(String[] args) {
   
        int block = Integer.MAX_VALUE;
        char[] data = {
   'A','B','C','D','E','F','G'};
        int nodes = data.length;
        int[][] weight = {
   
                {
   block,5,7,block,block,block,2},
                {
   5,block,block
程序 = 数据结构 + 算法  程序是为了解决实际问题而存在的。然而为了解决问题,必定会使用到某些数据结构以及设计一个解决这种数据结构算法。如果说各种编程语言是程序员的招式,那么数据结构算法就相当于程序员的内功。编程实战算法,不是念PPT,我们讲的就是实战与代码实现与企业应用。程序 = 数据结构 + 算法                ——图灵奖得主,计算机科学家N.Wirth(沃斯)作为程序员,我们做机器学习也好,做python开发也好,java开发也好。有一种对所有程序员无一例外的刚需 —— 算法数据结构日常增删改查 + 粘贴复制 + 搜索引擎可以实现很多东西。同样,这样也是没有任何竞争力的。我们只可以粘贴复制相似度极高的功能,稍复杂的逻辑没有任何办法。语言有很多,开发框架更是日新月异3个月不学就落后我们可以学习很多语言,很多框架,但招聘不会考你用5种语言10种框架实现同一个功能。真正让程序员有区分度,企业招聘万年不变的重点 —— 算法数据结构算法代表程序员水平的珠穆朗玛。如果说各种编程语言是程序员的招式,那么数据结构算法就相当于程序员的内功。 想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。 开这个系列的目的是为了自我不断积累。不积跬步无以至千里嘛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值