pandas 处理带有 合并的单元格

import pandas as pd
from openpyxl import load_workbook

def fill_merged_cells(excel_path, sheet_name=None,withhead=None):
    # 1. 用openpyxl读取工作簿,获取合并区域
    wb = load_workbook(excel_path)
    sheet = wb[sheet_name] if sheet_name else wb.active  # 指定工作表,默认激活的表
    
    # 2. 用pandas读取原始数据(保留NaN)
    df = pd.read_excel(excel_path, sheet_name=sheet_name, engine='openpyxl',header=None if withhead is None else 0)
    
    # 3. 遍历所有合并区域,填充数据(openpyxl的行列从1开始,pandas从0开始)
    for merged_range in sheet.merged_cells.ranges:
        # 获取合并区域的行列范围(转换为pandas的0索引)
        min_row = merged_range.min_row - 1
        max_row = merged_range.max_row - 1
        min_col = merged_range.min_col - 1
        max_col = merged_range.max_col - 1
        
        # 获取左上角单元格的值(合并区域的有效值)
        fill_value = df.iloc[min_row, min_col]
        
        # 填充整个合并区域
        df.iloc[min_row:max_row+1, min_col:max_col+1] = fill_value
    
    return df

# 调用函数(示例:处理test.xlsx的Sheet1)
df_filled = fill_merged_cells("data2\遗址标签分类.xlsx", sheet_name="Sheet1")
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

15122306087

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值