日志统计题目的单调队列优化

	单调队列对于处理冗余元素以及快速操作有效元素有着重要作用,其思想
往往能降低复杂度、优化重复操作等等,和双指针思想有着密切关系,是
一个重要的工具。

单调队列——滑动窗口

给定一个大小为 n≤106 的数组。

有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。

你只能在窗口中看到 k 个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为 [1 3 -1 -3 5 3 6 7],k 为 3
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式
输入包含两行。

第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。

第二行有 n 个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式
输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7

#include <iostream>
using namespace std;
const int N =1e6+3;
int n;
int q[N];
int hh,tt=-1;
int a[N];
int main()
{
    int k;
    cin>>n>>k;
    for(int i=0;i<n;i++)cin>>a[i];
    for(int i=0;i<n;i++)
    {
        
        while(i-k+1>q[hh]&&hh<=tt)hh++;
        
        while(a[i]<a[q[tt]]&&hh<=tt)tt--;
        q[++tt]=i;
        if(hh<=tt)cout<<a[q[i-k+1]]<<" ";
        else cout<<"-1"<<" ";
        
        
        tt=-1,hh=0;
        while(i-k+1>q[hh]&&hh<=tt)hh++;
        while(a[i]<a[q[tt]]&&hh<=tt)tt--;
        q[++tt]=i;
        if(hh<=tt)cout<<a[q[i-k+1]]<<" ";
        else cout<<"-1"<<" ";        
    }
    return 0;
}

日志统计题目

小明维护着一个程序员论坛。现在他收集了一份”点赞”日志,日志共有 N 行。

其中每一行的格式是:

ts id
表示在 ts 时刻编号 id 的帖子收到一个”赞”。

现在小明想统计有哪些帖子曾经是”热帖”。

如果一个帖子曾在任意一个长度为 D 的时间段内收到不少于 K 个赞,小明就认为这个帖子曾是”热帖”。

具体来说,如果存在某个时刻 T 满足该帖在 [T,T+D) 这段时间内(注意是左闭右开区间)收到不少于 K 个赞,该帖就曾是”热帖”。

给定日志,请你帮助小明统计出所有曾是”热帖”的帖子编号。

输入格式
第一行包含三个整数 N,D,K。

以下 N 行每行一条日志,包含两个整数 ts 和 id。

输出格式
按从小到大的顺序输出热帖 id。

每个 id 占一行。

数据范围
1≤K≤N≤105,
0≤ts,id≤105,
1≤D≤10000
输入样例:
7 10 2
0 1
0 10
10 10
10 1
9 1
100 3
100 3
输出样例:
1
3

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5+3;
int n,k,d;
int st[N];
int cnt[N];
struct Point{
    int ts,id;
    
}point[N];
bool cmp(Point a,Point b)
{
    return a.ts < b.ts;
}
int main()
{
    scanf("%d%d%d",&n,&d,&k);
    
    for(int i = 1; i<=n;i++)
    {
        scanf("%d%d",&point[i].ts,&point[i].id);
    }
    
    sort(point+1,point+1+n,cmp);
    
    for(int i = 1 , j = 1;i<=n; i++)
    {
        int t = point[i].ts , idx = point[i].id;
        while(t - point[j].ts>=d)cnt[point[j].id]--,j++;
        cnt[idx] ++;
        if(cnt[idx] >= k)st[idx]=true;
    }
    
    for(int i = 0;i<=N;i++)if(st[i])cout<<i<<endl;
    
    
    return 0;
}

滑动窗口为单调队列的模板题,这个队列维护了有效区间内的最小或者最大值在O(1)的时间进行操作,两题的不同点在于,第一题要在新加元素的时候把其它不必要元素弹出,即当求最小值的时候,加入元素如果比前面数小,那么当前区间求最小时前面的数就是无效元素弹出,因此这个队列不一定就装满了一整个区间长度的元素。

第二题则是一个个时间点进行枚举,区间长度len-1都是相同的元素,因此没必要每次都进行len次操作,只用考虑头尾,进行统计即可

可知双指针思想在单调队列中也同样适用,一个指针顶在右端点,一个指针顶在左端点,不符合条件,左端点动,而右端点定死就行。

(动态规划也同样涉及单调队列优化,复习到那在进行对比)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值