- 博客(5)
- 收藏
- 关注
转载 数据库1NF,2NF,3NF,BCNF
数据库有三大范式和BC范式,我们来详细探讨一下: 首先三大范式: 第一范式 第一范式(1NF):表中所有属性都不能再分,都应该是原子值。 这也是数据表的最低的最基本的要求。 第二范式 第二范式(2NF):在满足第一范式的前提下,还要求每一个非主属性都要完全依赖于任何一个候选码。 上面这句话听起来比较抽象,其实也好理解。(下面的主键(限第二范式中)其实指:主键或候选码,这么写的看起来太绕就简写成主键了,大家注意一下) 它的意思就是指,每一个非主属性都应该和主键有关(不能只和主键的一部分相关,这是指联合
2022-04-04 11:29:06 127
转载 kaggle 项目步骤
目录 一、EDA(Exploratory Data Analysis) 二、Data Preprocessing(数据预处理) 三、Feature Engineering(特征工程) 四、Model Selection and Training 五、Model Ensemble(模型集成) 一、EDA(Exploratory Data Analysis) EDA:也就是探索性的分析数据 目的: 理解每个特征的意义; 知道哪些特征是有用的,这些特征哪些是直接可以用的,哪些需要经过
2021-09-28 15:39:51 710
原创 kaggle 项目 房价预测 一改
前言 之前文章对项目有了简单的了解 并且使用随机森林模型预测了数据 貌似在60%左右 结果很差 kaggle 项目 预测房价 看了一些其他kaggler的notebook之后 学到了很多知识 在这里写下 供自己以后参考 一、导入包和检查数据 老样子 先导入数据 和 需要的包 二、使用步骤 1.引入库 代码如下(示例): import numpy as np import pandas as pd import matplotlib.pyplot as ...
2021-09-24 16:49:16 225
原创 kaggle 项目 预测房价
目录 前言 一、数据的加载和检查 二、清洗数据 1.使用interpolate 填充缺失值 2.使用get_dummies转换成One-Hot Encoding 三、使用随机森林模型 总结 前言 目标概览 House Price 这是一个监督学习问题,意味着训练集中包含一系列的观察数据(行)和相关的多种信息(列)。其中一列是我们感兴趣并能够预测的信息,通常称其为目标变量或者因变量,在分类问题中称为标签、类。在我们的案例中,目标变量是房价。其它的列通常称为独立变量或特征。.
2021-09-22 16:19:21 227
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人