kaggle 项目 预测房价

目录

前言

一、数据的加载和检查

二、清洗数据

1.使用interpolate 填充缺失值

2.使用get_dummies转换成One-Hot Encoding

三、使用随机森林模型

总结


前言

目标概览  House Price

这是一个监督学习问题,意味着训练集中包含一系列的观察数据(行)和相关的多种信息(列)。其中一列是我们感兴趣并能够预测的信息,通常称其为目标变量或者因变量,在分类问题中称为标签、类。在我们的案例中,目标变量是房价。其它的列通常称为独立变量或特征。我们还有一个测试集,也包含一系列的观察数据,其中的列与训练集相同,除了目标变量,因为我们的目标就是预测目标变量的值。因此,完美情况下,我们要建立一个模型,该模型可以学习训练集中因变量和独立变量之间的关系,然后使用学习到的知识在测试集中尽可能准确地预测因变量(目标变量)的值。由于目标变量(房价)是连续的,可以取任意的值,因此这个问题属于回归问题。


一、数据的加载和检查

运行创建好的项目 首先会打印出来一些数据的存放路径  (数据需要自己导入)

/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv
/kaggle/input/house-prices-advanced-regression-techniques/data_description.txt
/kaggle/input/house-prices-advanced-regression-techniques/train.csv
/kaggle/input/house-prices-advanced-regression-techniques/test.csv

直接使用路径 df用来  存放整体数据 test放测试数据

path = '/kaggle/input/house-prices-advanced-regression-techniques/'
df = pd.read_csv(f'{path}train.csv',index_col = 'Id')
df_test = pd.read_csv(f'{path}test.csv',index_col = 'Id')

使用info函数可以查看列信息 看一下值的缺省

df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   MSSubClass     1460 non-null   int64  
 1   MSZoning       1460 non-null   object 
 2   LotFrontage    1201 non-null   float64
 3   LotArea        1460 non-null   int64  
 4   Street         1460 non-null   object 
 5   Alley          91 non-null     object 
 6   LotShape       1460 non-null   object 
 7   LandContour    1460 non-null   object 
 8   Utilities      1460 non-null   object 
 9   LotConfig      1460 non-null   object 
 10  LandSlope      1460 non-null   object 
 11  Neighborhood   1460 non-null   object 
 12  Condition1     1460 non-null   object 
 13  Condition2     1460 non-null   object 
 14  BldgType       1460 non-null   object 
 15  HouseStyle     1460 non-null   object 
 16  OverallQual    1460 non-null   int64  
 17  OverallCond    1460 non-null   int64  
 18  YearBuilt      1460 non-null   int64  
 19  YearRemodAdd   1460 non-null   int64  
 20  RoofStyle      1460 non-null   object 
 21  RoofMatl       1460 non-null   object 
 22  Exterior1st    1460 non-null   object 
 23  Exterior2nd    1460 non-null   object 
 24  MasVnrType     1452 non-null   object 
 25  MasVnrArea     1452 non-null   float64
 26  ExterQual      1460 non-null   object 
 27  ExterCond      1460 non-null   object 
 28  Foundation     1460 non-null   object 
 29  BsmtQual       1423 non-null   object 
 30  BsmtCond       1423 non-null   object 
 31  BsmtExposure   1422 non-null   object 
 32  BsmtFinType1   1423 non-null   object 
 33  BsmtFinSF1     1460 non-null   int64  
 34  BsmtFinType2   1422 non-null   object 
 35  BsmtFinSF2     1460 non-null   int64  
 36  BsmtUnfSF      1460 non-null   int64  
 37  TotalBsmtSF    1460 non-null   int64  
 38  Heating        1460 non-null   object 
 39  HeatingQC      1460 non-null   object 
 40  CentralAir     1460 non-null   object 
 41  Electrical     1459 non-null   object 
 42  1stFlrSF       1460 non-null   int64  
 43  2ndFlrSF       1460 non-null   int64  
 44  LowQualFinSF   1460 non-null   int64  
 45  GrLivArea      1460 non-null   int64  
 46  BsmtFullBath   1460 non-null   int64  
 47  BsmtHalfBath   1460 non-null   int64  
 48  FullBath       1460 non-null   int64  
 49  HalfBath       1460 non-null   int64  
 50  BedroomAbvGr   1460 non-null   int64  
 51  KitchenAbvGr   1460 non-null   int64  
 52  KitchenQual    1460 non-null   object 
 53  TotRmsAbvGrd   1460 non-null   int64  
 54  Functional     1460 non-null   object 
 55  Fireplaces     1460 non-null   int64  
 56  FireplaceQu    770 non-null    object 
 57  GarageType     1379 non-null   object 
 58  GarageYrBlt    1379 non-null   float64
 59  GarageFinish   1379 non-null   object 
 60  GarageCars     1460 non-null   int64  
 61  GarageArea     1460 non-null   int64  
 62  GarageQual     1379 non-null   object 
 63  GarageCond     1379 non-null   object 
 64  PavedDrive     1460 non-null   object 
 65  WoodDeckSF     1460 non-null   int64  
 66  OpenPorchSF    1460 non-null   int64  
 67  EnclosedPorch  1460 non-null   int64  
 68  3SsnPorch      1460 non-null   int64  
 69  ScreenPorch    1460 non-null   int64  
 70  PoolArea       1460 non-null   int64  
 71  PoolQC         7 non-null      object 
 72  Fence          281 non-null    object 
 73  MiscFeature    54 non-null     object 
 74  MiscVal        1460 non-null   int64  
 75  MoSold         1460 non-null   int64  
 76  YrSold         1460 non-null   int64  
 77  SaleType       1460 non-null   object 
 78  SaleCondition  1460 non-null   object 
 79  SalePrice      1460 non-null   int64  
dtypes: float64(3), int64(34), object(43)
memory usage: 923.9+ KB

二、清洗数据

1.使用interpolate 填充缺失值

df = df.interpolate()

2.使用get_dummies转换成One-Hot Encoding

df = pd.get_dummies(df)

三、使用随机森林模型

rf = RandomForestRegressor(n_estimators=100, n_jobs=-1)
// 创建一个模型  n_estimators是树的数量 n_jobs是要并行运行的作业的数量  -1是全部使用
// 因为fit, predict, decision_path 和 apply都在树中并行化

rf.fit(df_train, target)
preds = rf.predict(df_test)
//fit() 从训练集(X, y)构建一个树的森林。
//predict() 为X预测回归目标。
my_submission = pd.DataFrame({'Id': df_test.index, 'SalePrice': preds})
my_submission.to_csv('./submission.csv', index=False)

//存储一下数据


总结

效果并不好 因为数据没有处理的很细致 模型可能也不是很贴合 

下次目标 对数据进行筛选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值