国科大高级人工智能7-命题逻辑

  • logics:逻辑,表达信息的形式语言

  • 语法syntax

  • 语义semantics

  • 逻辑研究的内容:形式化定义句子之间的关系

    • 语法:deduction(演绎(形式推演|—
    • 语义 entailment蕴含(逻辑推导|=
      在这里插入图片描述
  • 完备性:任何语义上蕴含的东西|=都可以在语法上推演出来|-

  • 可靠性:任何语法上可以推演|-的东西都是在语义上蕴含的|=

  • 哥德尔不完全定理:

    • 在一个更大的范围内(证明法和问题与正整数存在一一对应关系),不存在既可靠sound又完备的定理
      在这里插入图片描述
  • 一个句子 α \alpha α:x+y=4

  • model这个句子的模型:它的一个真值指派x=0,y=4

  • M ( α ) M(\alpha) M(α):句子的所有真值指派的集合,所有model

  • 蕴含(entailment):逻辑推导(语义上的)

    • 句子间的关系
    • K B ∣ = α KB|=\alpha KB=α
      • KB–知识库knowledge base
      • α \alpha α真<==>KB真
      • 如果一个model(真值指派)能让 α \alpha α真,则KB真
        • 所以 M ( K B ) ⊆ M ( α ) M(KB) \subseteq M(\alpha) M(KB)M(α)

在这里插入图片描述
KB=Giants won and Reds won
α = \alpha= α=Giants won

在这里插入图片描述

命题逻辑(语法Syntax)

  • 命题propositions:可以判断真假的陈述句

    • 命题逻辑不考虑随时间变化的命题(今天是星期一)
  • 原子命题atomic propositions:最小的命题P/Q/R

  • 文字:原子命题或它的反

  • 允许的符号

    • negation非:¬
    • conjunction: 合取-且∧
    • disjunction:析取-或∨
    • implication:=>
      • ==¬P∨Q
    • biconditional:<=>
      • 都相同为真
  • 原子句=True|False|P|Q|R

  • 句子=原子句子|复合句

  • 复合句=用符号链接起来的句子(带括号的也是)

PQ¬PP∧QP∨QP=>QP<=>Q
falsefalsetruefalsefalsetruetrue
falsetruetruefalsetruetruefalse
truefalsefalsefalsetruefalsefalse
truetruefalsetruetruetruetrue

由枚举推理(inference by enumeration

  • 深度优先枚举是
    • sound-可靠性
    • complete -完备性
  • KB |= α \alpha α—也就是真值表证明
    • 用定义证: M ( K B ) ⊆ M ( α ) M(KB) \subseteq M(\alpha) M(KB)M(α)
      • 如果一个model让KB为真,且
        • α \alpha α真,返回真;
        • α \alpha α假,返回假
      • 如果让KB假,也返回真
      • 对所有model的结果取∧
    • 遍历所有model,如果他让KB真,且让 α \alpha α真,则成立
    • 时间复杂度 O ( 2 n ) , n 个 符 号 , 2 n 种 指 派 O(2^n),n个符号,2^n种指派 O(2n),n2n
    • 是一个co-NPC问题
    • KB |= α \alpha α<==>
      • KB∧¬ α \alpha α永假(unsatisfiable)
      • KB |= α \alpha α<==> KB => α \alpha α永真(valid)
        • 真值表证明吧
      • KB => α \alpha α永真
        • <==> ¬KB ∨ α \alpha α永真
        • <==>¬(KB∧ ¬ α \alpha α)永真
        • <==> KB∧¬ α \alpha α永假(unsatisfiable)

在这里插入图片描述
在这里插入图片描述

  • $\beta |= \alpha 且 \alpha|=\beta $
    • M ( β ) ⊆ M ( α ) 且 M ( α ) ⊆ M ( β ) M(\beta) \subseteq M(\alpha) 且 M(\alpha) \subseteq M(\beta) M(β)M(α)M(α)M(β)==>$ M(\beta) = M(\alpha)$

区别

* entailment蕴含|=:
    * 逻辑上的概念,刻画两种句子之间的关系
* implication暗含=>
    * 命题之间的运算子,使用真值表刻画其语义
  • validity符合逻辑的
    • 对所有model为真(永真)
      • eg:True,A∨¬A
    • KB |= α \alpha α<==> KB => α \alpha α永真(valid)
  • satisfiable可满足的:
    • 存在正确的真值指派model
    • eg:A∨B
  • unsatisfiable不可满足:
    • no model可以令它为真(永假)
    • True,A∧¬A
    • KB |= α \alpha α<==> KB∧¬ α \alpha α永假(unsatisfiable)

deduction(形式推演,演绎)

–符号上面的形式推演,不用考虑语义
|—推出: Σ ∣ − A \Sigma |- A ΣA

  • 11条规则
    1. 自反:A|-A
    • 增加前提: Σ ∣ − A \Sigma |- A ΣA==> Σ , Σ ′ ∣ − A \Sigma,\Sigma' |- A Σ,ΣA
    • ¬消去:
      • Σ \Sigma Σ,¬ A |- B
      • Σ \Sigma Σ,¬ A |- ¬B
      • ==> Σ ∣ − A \Sigma |- A ΣA
    • ->-消去:->是=>
      • Σ ∣ − A − > B \Sigma |- A->B ΣA>B
      • Σ ∣ − A \Sigma |- A ΣA
      • ==> Σ ∣ − B \Sigma |- B ΣB
    • ->+引入:->是=>
      • Σ , A ∣ − B \Sigma,A |- B Σ,AB
      • ==> Σ ∣ − A − > B \Sigma |- A->B ΣA>B
    • <->-消去:<->是<=>
      • a Σ ∣ − A < − > B \Sigma |- A<->B ΣA<>B
      • Σ ∣ − A \Sigma |- A ΣA
      • ==> Σ ∣ − B \Sigma |- B ΣB.
      • b Σ ∣ − A < − > B \Sigma |- A<->B ΣA<>B
      • Σ ∣ − B \Sigma |- B ΣB
      • ==> Σ ∣ − A \Sigma |- A ΣA
    • <->+引入:<->是<=>
      • Σ , A ∣ − B \Sigma,A |- B Σ,AB
      • Σ , B ∣ − A \Sigma,B |- A Σ,BA
      • ==> Σ ∣ − A − > B \Sigma |- A->B ΣA>B
    • ∧-消除:
      • Σ ∣ − A ∧ B \Sigma |- A∧B ΣAB
      • ==> Σ ∣ − A \Sigma |- A ΣA
      • ==> Σ ∣ − B \Sigma |- B ΣB
    • ∧+引入:
      • Σ ∣ − A \Sigma |- A ΣA
      • Σ ∣ − B \Sigma |- B ΣB
      • ==> Σ ∣ − A ∧ B \Sigma |- A∧B ΣAB
    • ∨- 消去
      • Σ , A ∣ − C \Sigma ,A |- C Σ,AC
      • Σ , B ∣ − C \Sigma ,B |- C Σ,BC
      • ==>$\Sigma ,A∨B |-C $
    • ∨引入
      • Σ ∣ − A \Sigma |- A ΣA
      • ==>$\Sigma |- A∨B $
      • ==>$\Sigma |- B∨A $
    • ∈ \in
      • A ∈ Σ A \in \Sigma AΣ
      • ==> Σ ∣ − A \Sigma |- A ΣA
        • A ∈ Σ 且 Σ ′ = Σ − { A } A \in \Sigma 且\Sigma'=\Sigma-\{A\} AΣΣ=Σ{A}
        • A |- A
        • A , Σ ′ ∣ − A A,\Sigma' |- A A,ΣA

在这里插入图片描述

作业(定理证明)

  • 2.6.3
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值