文章目录
- HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]
- 推荐结论:
- entity name的方法中效果好的一波
- 短评
- 优点:entity name中效果好,且返回的是排名
- 缺点:HGCN的GCN虽然使用了highway gate,但不是GAT,大图可能不友好
- 类别:
- 实体对齐
- 基于embedding的实体对齐
- BootEA的bootstrapping方法
- transE系列–特定于实体对齐的embedding+swap
- 数据集:
- DWY100k
- DBP15k
- DBP-FB
- SRPRS
- 图谱
- wikidata/DBpedia/yago3
- 规模:15k/100k
- 底层模型:
- 嵌入模块:GCN+highway gate
- 对齐模块:calibration(学习一个embedding)
- 相似度:实体L2,关系L1
- 损失函数:
- 无embedding loss:
- 对齐 loss:d=|e1-e2|,margin-based loss
- 负采样:k-近邻
- entity alignment+entityname
- entity name用于model 初始化
- 速度
- 比boostrapping的方法慢
- 开源软件情况:[code],不在OpenEA里
- 评估质量:
- DBP15k:
- 在使用entity name的模型中仅次于CEA
- SRPRS:在使用entity name的模型中仅次于CEA
- DWY100:在使用entity name的模型中仅次于CEA
- DBP15k:
- 输入:2个KG的关系三元组(seed entity alignment)
- 输出:实体对齐对(也有排名),关系对齐(有排名)
1.动机
- 动机
- 没用关系表达
- 关系和实体密切相关,所以应该有增益
- 用了关系的:需要关系对齐的seed
- eg JAPE,IPTransE,MTransE
- 没用关系表达