【实体对齐·HGCN】Jointly Learning Entity and Relation Representations for Entity Alignment

  1. HGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”.
    Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Dongyan Zhao. (EMNLP 2019) [paper][code]
  • 推荐结论:
    • entity name的方法中效果好的一波
  • 短评
    • 优点:entity name中效果好,且返回的是排名
    • 缺点:HGCN的GCN虽然使用了highway gate,但不是GAT,大图可能不友好
  • 类别:
    • 实体对齐
    • 基于embedding的实体对齐
    • BootEA的bootstrapping方法
    • transE系列–特定于实体对齐的embedding+swap
  • 数据集:
    • DWY100k
    • DBP15k
    • DBP-FB
    • SRPRS
  • 图谱
    • wikidata/DBpedia/yago3
    • 规模:15k/100k
  • 底层模型:
    • 嵌入模块:GCN+highway gate
    • 对齐模块:calibration(学习一个embedding)
    • 相似度:实体L2,关系L1
    • 损失函数:
      • 无embedding loss:
      • 对齐 loss:d=|e1-e2|,margin-based loss
        • 负采样:k-近邻
    • entity alignment+entityname
    • entity name用于model 初始化
  • 速度
    • 比boostrapping的方法慢
  • 开源软件情况:[code],不在OpenEA里
  • 评估质量:
    • DBP15k:
      • 在使用entity name的模型中仅次于CEA
    • SRPRS:在使用entity name的模型中仅次于CEA
    • DWY100:在使用entity name的模型中仅次于CEA
  • 输入:2个KG的关系三元组(seed entity alignment)
  • 输出:实体对齐对(也有排名),关系对齐(有排名)

1.动机

  • 动机
    • 没用关系表达
      • 关系和实体密切相关,所以应该有增益
    • 用了关系的:需要关系对齐的seed
      • eg JAPE,IPTransE,MTransE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值