简明阐述神经网络的步骤以及总结

一:神经网络的通俗解释:
首先神经网络分为多层,第一层为数据输入,我们将输入数据的这一层称为输入层,我们可以输入需要识别的图片,色块等信息。第二层为隐藏层,这里说是第二层是不准确的,因为隐藏层通常情况不止一层,隐藏层负责对数据进行处理,计算。最后一层为输出层,负责输出结果。

在这里插入图片描述层与层之间用一定的函数关系连接。

二:神经网络的运算步骤:
我们梳理一下层之间的关系以及层内部的逻辑运算。

对于输入层和隐藏层:
我们定义输入层为X[1] ,隐藏层为z[1],z[1]=w[1]x[1] + b[1],x[1]为输入层的数据,w[1]为权重,也就是我们要求解的值,b[1]为偏置项。这里说明一下,z,w,x,b均为矩阵形式。

这里说一下为什么要有偏置项,逻辑回归的本质,就是寻找出一条“线”,这条“线”能将数据分类,在这里插入图片描述
对于一个线性函数 ,其定义为y = kx +b ,b为截距。若神经网络没有偏置项b,就像线性函数没有截距,“线”就成了一个原点的线。各位可以对上图试试,能不能找到一条过原点的“线”,将这个俩个类分开。

对于隐藏层和隐藏层:
我们说过,隐藏层负责一定的逻辑运算,隐藏层将输入层通过线性关系得到的数据z进行逻辑处理,这个逻辑处理是调用 激活函数 进行处理,这个激活函数,其实就是我们逻辑回归的sigmoid、tanh、relu函数。
我们通常使用relu函数,记做g(),我们将隐藏函数从输入层得到的z,代入到激活函数中,得到a[1] = g(z[1]),如果隐藏层为多层的话,我们将得到的结果a[1]作为第二个隐藏层的输入值,用“输入层–第一次隐藏层”同样的连接方法,将第一层隐藏层与第二层隐藏层相连接,即 z[2] = w[2]a[1] + b[2]
在这里插入图片描述对于隐藏层和输出层:我们将隐藏层的数据进行同样的逻辑回归操作,将z[2]带入到激活函数中,得到结果。
这时候,神经网络的正向传输基本结束,我们注意到,在对神经网络的正向传输中,我们得到的结果都是有权重来决定的,我们在正向传输的过程中,并没有得到对权重的修正,因此我们接下来要进逆向传输,来达到对权重的修正。
逆向传输过程:
我们设真正值为y[i],通过正向传输得到的最终结果为h[i],因此我们可以得到损失函数为 J = ∑ i = 1 n ( h ( i ) − y ( i ) ) 2 J=\sum ^{n}_{i=1}\left( h\left( i\right) -y\left( i\right) \right) ^{2} J=i=1n(h(i)y(i))2
![在这里插入图片描述](https://img-blog.csdnimg.cn/20190805195740257.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4

举例来说,我们想要修正w1的权重,根据梯度下降公式, W 1 : = W 1 − θ ∂ J ∂ W 1 W_{1}:=W_{1}-\theta \dfrac {\partial J}{\partial W_{1}} W1:=W1θW1J
但是,我们从图中可以知道,J并不直接与w有关系,即不能直接对w求偏导,要根据链式法则,
∂ J ∂ W 1 = ∂ J ∂ g ⋅ ∂ g ∂ z ⋅ ∂ z ∂ W 1 \dfrac {\partial J}{\partial W_{1}}=\dfrac {\partial J}{\partial g}\cdot \dfrac {\partial g}{\partial z}\cdot \dfrac {\partial z}{\partial W_{1}} W1J=gJzgW1z
g为你使用的激活函数,z即为z[1]=w[1]x[1] + b[1]
对于其他的权重也是这样,顺便说一,这里只是通过一个输出结果对w1进行权重更新,一般神经网络有多个结果,只要分别计算出来 ∂ J 1 ∂ W 1 \dfrac {\partial J_{1}}{\partial W_{1}} W1J1 ∂ J 2 ∂ W 1 \dfrac {\partial J_{2}}{\partial W_{1}} W1J2 ∂ J 3 ∂ W 1 \dfrac {\partial J_{3}}{\partial W_{1}} W1J3.。。。。。 ∂ J i ∂ W 1 \dfrac {\partial J_{i}}{\partial W_{1}} W1Ji,并将这些值加起来记为 ∂ J 总 ∂ W 1 \dfrac {\partial J_{总}}{\partial W_{1}} W1J,然后 W 1 : = W 1 − θ ∂ J 总 ∂ W 1 W_{1}:=W_{1}-\theta\dfrac {\partial J_{总}}{\partial W_{1}} W1:=W1θW1J即可

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值