读《数学辞海》编辑委员会之《数学辞海 第三卷》

本文探讨了《数学辞海 第三卷》中的分析学和微积分方程主题。分析学,尽管名称易引起误解,实际上是基于无穷和极限概念的数学分支,包括序列、微分和积分。实分析、复分析和泛函分析是其重要组成部分。微积分方程虽与分析学相关,但研究对象不同。现代数学教育中,对微积分的理解往往忽视了代数和数理逻辑的基础,而在数值解依赖计算机的今天,传统的笔算能力锻炼值得反思。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《数学辞海》编辑委员会. 数学辞海 第三卷.

ISBN: 978-7-81050-612-0

这次来聊《数学辞海 第三卷》,细心看本书 ISBN 的话你就会发现,这本书又换了一个出版社。不过这倒不影响本书的内容安排。因为《数学辞海》只是分不同出版社出版,并不是分不同出版社分别编纂。按照统一的内容大纲的安排,这一卷的主题是分析学和微积分方程。

“分析学”大概是我纠结最久的一个数学名词。“分析”一词不像代数、几何、概率、组合等名词那么好懂,因为它有歧义。一般来说,把对象整体拆开研究就能叫做“分析”,在实际使用中“分析”一词更是和“研究”画上了等号。在这样的语境背景之下,“数学分析”就着实是一个让人费解的词。它表示用数学分析么?可数学的哪个子学科不是在用数学做分析呢?还有“分析学”,这个名称所能囊括的范畴实在是太广了。如果按字面意思理解,“分析学”应当是一切数学和科学中分而析之研究方法的总论。

但实际上,以上的理解都有问题。“分析学”实际上是指建立在无穷和极限概念上的数学分支,一般来说包含序列、微分、积分三个部分。虽然微积分中确实存在先分而析之,再合并总体的思维过程,但把这个领域叫“分析学”实在是不妥。不过这个名字已经叫了很久了,只好从俗。

分析学本质上是研究抽象的无穷极限的,这点和代数学类似。实数上的微积分、复数上的微积分、矩阵上的微积分等都是分析学的研究对象,但分析学却不仅仅研究这些作为特例的分析学,也研究抽象的一般的微积分(或者说一般的极限理论)。由于极限的概念和直观上的“连续”有关,因而分析学常常被视为研究连续的数学。而较少涉及极限概念的代数、数理逻辑、组合学等诸学科则被视为研究离散的数学。如果硬要这么分就会发现,其实数学中或者人类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值