官方文档:https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.eye.html#numpy.eye
1 numpy.eye()
numpy.eye(N, M=None, k=0, dtype=<type 'float'>)
Parameters: | N:int型,表示的是输出的行数 M:可选,int型,输出的列数,如果没有就默认为N k:可选,int型,对角线的下标,默认为0表示的是主对角线,负数表示的是低对角,正数表示的是高对角。 dtype:可选,数据的类型,返回的数据的数据类型 |
Returns: | ndarray of shape (N,M):N*M的数组 一个所有元素都等于零的数组,除了第k条对角线,它的值等于1。 |
栗子1:普通的用法
import numpy as np
a=np.eye(3)
print(a)
a=np.eye(4,k=1)
print(a)
a=np.eye(4,k=-1)
print(a)
a=np.eye(4,k=-3)
print(a)
# result
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
[[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]]
[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]
栗子2:深度学习中的高级用法,将数组转成one-hot形式
该函数的用法非常的简单,但是在预制的代码中,这个函数的用法并非仅仅生成一个对角矩阵,而是通过其将一个label数组,大小为(1,m)或者(m,1)的数组,转化成one-hot数组。
# one-hot编码
import numpy as np
labels=np.array([[1],[2],[0],[1]])
print("labels的大小:",labels.shape,"\n")
#因为我们的类别是从0-2,所以这里是3个类
a=np.eye(3)[1]
print("如果对应的类别号是1,那么转成one-hot的形式",a,"\n")
a=np.eye(3)[2]
print("如果对应的类别号是2,那么转成one-hot的形式",a,"\n")
a=np.eye(3)[1,0]
print("1转成one-hot的数组的第一个数字是:",a,"\n")
#这里和上面的结果的区别,注意!!!
a=np.eye(3)[[1,2,0,1]]
print("如果对应的类别号是1,2,0,1,那么转成one-hot的形式\n",a)
res=np.eye(3)[labels.reshape(-1)]
print("labels转成one-hot形式的结果:\n",res,"\n")
print("labels转化成one-hot后的大小:",res.shape)
# result
labels的大小: (4, 1)
如果对应的类别号是1,那么转成one-hot的形式 [0. 1. 0.]
如果对应的类别号是2,那么转成one-hot的形式 [0. 0. 1.]
1转成one-hot的数组的第一个数字是: 0.0
如果对应的类别号是1,2,0,1,那么转成one-hot的形式
[[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]]
labels转成one-hot形式的结果:
[[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]]
labels转化成one-hot后的大小: (4, 3)
2 numpy.identity()
这个函数和之前的区别在于,这个只能创建方阵,也就是N=M。
numpy.identity(n, dtype=None)
Parameters: | n:int型表示的是输出的矩阵的行数和列数都是n dtype:表示的是输出的类型,默认是float |
Returns: | n*n的数组,主对角线为1,其余地方为0 |
栗子:
import numpy as np
a=np.identity(3)
print(a)
# result
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
参考:https://blog.csdn.net/m0_37393514/article/details/81455915