快速矩阵幂

题目链接:https://nanti.jisuanke.com/t/16442

#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn=11;
struct Mat{
    int v[maxn][maxn];
    int m,n;
    Mat(){
        m=0;
        n=0;
        memset(v,0,sizeof(v));
    }
}; 
//初始矩阵 
Mat start(){
    Mat mat;
    mat.m=1;
    mat.n=10;
    mat.v[0][1]=1;
    return mat;
}

Mat special(){
    Mat mat;
    mat.m=10;
    mat.n=10;
    for(int i=1;i<10;i++){
        mat.v[i-1][i]=1;
        mat.v[i][0]=1;
    }
    return mat;
}

Mat mul_mat(Mat A,Mat B){
    Mat C;
    C.m=A.m;
    C.n=B.n;
    
    for(int i=0;i<A.m;i++){
        for(int j=0;j<B.n;j++){
            for(int k=0;k<A.n;k++){
                C.v[i][j]=(C.v[i][j]+(A.v[i][k]*B.v[k][j]))%mod;
            }
        }
    }
    
    return C;
}

Mat pow_mat(Mat B,int t){
    Mat A=start();
    while(t){
        if(t&1){
            A=mul_mat(A,B);
        }    
        t>>=1;
        B=mul_mat(B,B);
    }
    return A;
}
int main(){
    long long t;
    cin>>t;
    Mat A = special();
    Mat ans = pow_mat(A,t-1);
    long long cnt=0; 
    for(int i=0;i<10;i++){
        cnt=(cnt+ans.v[0][i])%mod;
    }
    cout<<cnt%mod;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值