对于扩展动态目标的目标级融合

本文提出了一种针对多传感器扩展动态目标的融合方法,适用于自动驾驶场景。通过目标建模、扩展目标融合步骤,实现了目标的精确跟踪。在测试中,该方法在位置准确度上有显著优势,特别在量测信息不完整时,能有效融合不同传感器的范围信息。该方法在实际数据和模拟数据上均表现良好,提高了对动态目标的估计性能。
摘要由CSDN通过智能技术生成


本文是对文章《Object Level Fusion of Extended Dynamic Objects1》的翻译。
字面级翻译,仿冒必究,不喜勿喷。

摘要

本文提出了一种基于多源传感器扩展目标的泛化跟踪方法。
每个输入传感器的专业信息都映射成了简单的模型参数,允许融合中心使用传感器的通用信息(融合中心指什么?)。
本文给出了模型类型和参数,用一种综合处理方法对经典卡尔曼进行了扩展。
通过这种方法,中心融合节点可以同时考虑track级信息和每个传感器的范围估计(传感器的范围估计指什么?)。
该方法与经典目标中心融合方法和范围估计方法进行了比较。
仿真数据表明,在一般意义上,该方法能够用于不同的配置,不需要进行调整。(“不同的配置”指不同的传感器配置吗?
本文也给出了基于扩展目标空间向量估计误差的详细性能结果。
该发现后期通过前置传感器采集的真实数据进行完善测试。
结果表明,该方法呢在位置准确度上有较大的优势,尤其是当量测信息不包含所有方向上的完整范围信息时优势较大。


一、简介

长期以来,目标检测和跟踪一直是一个热门话题,基于激光雷达、雷达或图像数据,已经产生了各种性能良好的检测和跟踪车辆、行人等的算法。
传感器原始数据通常使用有关传感器行为的专业信息进行处理,以提高检测的鲁棒性和跟踪性能。(有关传感器行为的专业信息指什么?
除了在该领域的研究努力,多年来,人们一直致力于将这些算法稳健地应用于性能良好的商用传感器模块,比如驾驶辅助系统等。
随着驾驶辅助系统和自动驾驶技术发展得越来越复杂,人们需要更先进、更完整的周边信息[1]。
新的需求催生了各种类型的车辆安装各种类型传感器的组合。
将特定于传感器的专业信息与高级推理分离,有利于实现可管理、可扩展的融合系统(特定于传感器的专业信息与高级推理,分别指什么)。
这可以通过传感器特定处理模块的分层组合和多层次的数据融合来实现。
现有的处理模块一般使用轨迹融合,结合随时间迭代的目标假设(这一句在讲什么属实是不清楚,猜测是指融合过程中卡尔曼的目标假设会变化)。分层的系统可以基于现有处理模块进行优化。

许多关于目标跟踪和融合的出版物,如[2]和[3],将目标处理为空间中的动态点。
这样的点表示在飞机和火箭雷达跟踪中工作良好,但不适用于陆地交通对象的建模,陆地交通目标的范围与传感器的距离相比是不可忽略的(extent指范围,第三部分会介绍什么是范围:对目标来说指尺寸+朝向+相应误差估计)。
在跟踪和融合中目标范围不容忽视,来自图像和激光雷达传感器的数据对目标范围提供了有价值的信息。
据我们所知,目前还没有一个通用的标准方法进行扩展目标表示,比如状态信息、质量度量以及通用的传感器专业信息等方面。

本文提出了一种中心融合系统,该系统使用了任意一组车辆集成传感器模块的跟踪扩展动态对象。
每个传感器模块使用自己的专业信息。
从融合的角度来看,传感器被视为黑匣子;只有传感器的输出数据以预定义的接口结构给出,数据处理和跟踪的内部信息是未知的。
因此,传感器输出目标描述需要包含所有已知的传感器信息,以一般化的形式进行融合和推理。
为此,我们引入了动态目标的扩展边界框模型。
除了目标尺寸之外,该模型还包括一些广义信息,比如质量或传感器模块使用的隐藏检测和跟踪算法的不确定性。
我们还扩展了一种基于线性卡尔曼滤波的目标级融合,通过一个程序来处理由本文模型给出的目标范围和不确定性信息,以提高状态更新的性能。
该方法将不同的扩展目标组合成一幅车周动态地图。
评估的重点是动态目标估计的融合,因为这代表了该方法最明显的效果。(什么意思?怎么评估?

论文的组织结构如下:
第二部分文献综述。
第三部分详细介绍了目标建模问题以及提出的解决方案。
第四部分介绍了扩展的关联和融合步骤。
第五部分描述了测试设置和评估指标。
第六部分对结果进行了展示和讨论。
第七部分总结。

二、文献综述

1.引入库

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值