Skip List(跳表)

转载自:lotabout.me


正文

跳表(skip list) 对标的是平衡树(AVL Tree),是一种 插入/删除/搜索 都是 O(log n) 的数据结构。跳跃表和二叉查找它最大的优势是原理简单、容易实现、方便扩展、效率更高。因此在一些热门的项目里用来替代平衡树,如 redis, leveldb 等。

跳表的基本思想

首先,跳表处理的是有序的链表(一般是双向链表,下图未表示双向),如下:在这里插入图片描述
这个链表中,如果要搜索一个数,需要从头到尾比较每个元素是否匹配,直到找到匹配的数为止,即时间复杂度是 O(n)。同理,插入一个数并保持链表有序,需要先找到合适的插入位置,再执行插入,总计也是 O(n) 的时间。

那么如何提高搜索的速度呢?很简单,做个索引:
在这里插入图片描述
如上图,我们新创建一个链表,它包含的元素为前一个链表的偶数个元素。这样在搜索一个元素时,我们先在上层链表进行搜索,当元素未找到时再到下层链表中搜索。例如搜索数字 19 时的路径如下图:
在这里插入图片描述
先在上层中搜索,到达节点 17 时发现下一个节点为 21,已经大于 19,于是转到下一层搜索,找到的目标数字 19。

我们知道上层的节点数目为 n/2,因此,有了这层索引,我们搜索的时间复杂度降为了:O(n/2)。同理,我们可以不断地增加层数,来减少搜索的时间:
在这里插入图片描述
在上面的 4 层链表中搜索 25,在最上层搜索时就可以直接跳过 21 之前的所有节点,因此十分高效。

更一般地,如果有 k 层,我们需要的搜索次数会小于 ⌈ n 2 k \frac{n}{2^k} 2kn⌉+ k k k,这样当层数 k 增加到 ⌈ l o g 2 n log_2n log2n⌉ 时,搜索的时间复杂度就变成了 l o g n logn logn。其实这背后的原理和二叉搜索树或二分查找很类似,通过索引来跳过大量的节点,从而提高搜索效率。


跳表

上节的结构是“静态”的,即我们先拥有了一个链表,再在之上建了多层的索引。但是在实际使用中,我们的链表是通过多次插入/删除形成的,换句话说是“动态”的。上节的结构要求上层相邻节点与对应下层节点间的个数比是 1:2,随意插入/删除一个节点,这个要求就被被破坏了。

因此跳表(skip list)表示,我们就不强制要求 1:2 了,一个节点要不要被索引,建几层的索引,都在节点插入时由抛硬币决定。当然,虽然索引的节点、索引的层数是随机的,为了保证搜索的效率,要大致保证每层的节点数目与上节的结构相当。下面是一个随机生成的跳表:
在这里插入图片描述
可以看到它每层的节点数还和上节的结构差不多,但是上下层的节点的对应关系已经完全被打破了。

现在假设节点 17 是最后插入的,在插入之前,我们需要搜索得到插入的位置:
在这里插入图片描述
接着,抛硬币决定要建立几层的索引,伪代码如下:

randomLevel()
    lvl := 1
    -- random() that returns a random value in [0...1)
    while random() < p and lvl < MaxLevel do
        lvl := lvl + 1
    return lvl

上面的伪代码相当于抛硬币,如果是正面(random() < p)则层数加一,直到抛出反面为止。其中的 MaxLevel 是防止如果运气太好,层数就会太高,而太高的层数往往并不会提供额外的性能,一般 MaxLevel= log ⁡ 1 / p n \log_{1/p} {n} log1/pn。现在假设 randomLevel 返回的结果是 2,那么就得到下面的结果。
在这里插入图片描述
如果要删除节点,则把节点和对应的所有索引节点全部删除即可。当然,要删除节点时需要先搜索得到该节点,搜索过程中可以把路径记录下来,这样删除索引层节点的时候就不需要多次搜索了。

显然,在最坏的情况下,所有节点都没有创建索引,时间复杂度为O(n),但在平均情况下,搜索的时间复杂度却是 O(logn),为什么呢?


简单的性能分析

一些严格的证明会涉及到比较复杂的概率统计学知识,所以这里只是简单地说明。

每层的节点数目

上面我们提到 MaxLevel,原版论文 中用 L(n) 来表示,要求 L(n) 层有 1/p 个节点,在搜索时可以不理会比 L(n) 更高的层数,直接从 L(n) 层开始搜索,这样效率最高。

直观上看1,第 l 层的节点中在第 l+1 层也有索引的个数是 n l + 1 n_{l+1} nl+1= n l n_l nlP 因此第 l 层的节点个数为:

n l = n p l − 1 n_l=np^{l−1} nl=npl1

于是代入 n L ( n ) n_{L(n)} nL(n)=1/p 得到 L ( n ) L(n) L(n)= log ⁡ 1 / p n \log_{1/p} {n} log1/pn

最高的层数

上面推导到每层的节点数目,直观上看,如果某一层的节点数目小于等于 1,则可以认为它是最高层了,代入n p l − 1 p^{l−1} pl1 =1 得到层数 L m a x L_{max} Lmax= log ⁡ 1 / p n \log_{1/p} {n} log1/pn+1= L ( n ) L(n) L(n)+1=O( l o g n log_n logn)。

实际上这个问题并没有直接的解析解,我们能知道的是,当 n 足够大时,最大能达到的层数为 O(logn),详情可以参见我的另一篇博客最高楼层问题。

搜索的时间复杂度

为了计算搜索的时间复杂度,我们可以将查找的过程倒过来,从搜索最后的节点开始,一直向左或向上,直到最顶层。如下图,在路径上的每一点,都可能有两种情况:

在这里插入图片描述

  1. 节点有上一层的节点,向上。这种情况出现的概率是 p。
  2. 节点没有上一层的节点,向左。出现的概率是 1-p。

于是,设 C ( k ) C(k) C(k) 为反向搜索爬到第 k 层的平均路径长度,则有:

C(0) = 0
C(k) = p * (情况1) + (1-p) * (情况2)

将两种情况也用 C C C 代入,有:

C(k) = p*(1 + C(k–1)) + (1–p)*(1 + C(k))
C(k) = C(k–1) + 1/p
C(k) = k/p

上式表明,搜索时,平均在每层上需要搜索的路径长度为 1/p,从平均的角度上和我们第一小节构造的“静态”结构相同(p 取 1/2)。

又注意到,上小节我们知道跳表的最大层数为 O( l o g n logn logn),因此,搜索的复杂度
O( l o g n logn logn) /p =O( l o g n logn logn)。

P.S. 这里我们用到的是最大层数,原论文证明时用到的是 L ( n ) L(n) L(n),然后再考虑从 L ( n ) L(n) L(n)层到最高层的平均节点个数。这里为了理解方便不再详细证明。

skiplist与平衡树、哈希表的比较

  • skiplist和各种平衡树(如AVL、红黑树等)的元素是有序排列的,而哈希表不是有序的。因此,在哈希表上只能做单个key的查找,不适宜做范围查找。所谓范围查找,指的是查找那些大小在指定的两个值之间的所有节点。
  • 在做范围查找的时候,平衡树比skiplist操作要复杂。在平衡树上,我们找到指定范围的小值之后,还需要以中序遍历的顺序继续寻找其它不超过大值的节点。如果不对平衡树进行一定的改造,这里的中序遍历并不容易实现。而在skiplist上进行范围查找就非常简单,只需要在找到小值之后,对第1层链表进行若干步的遍历就可以实现。
  • 平衡树的插入和删除操作可能引发子树的调整,逻辑复杂,而skiplist的插入和删除只需要修改相邻节点的指针,操作简单又快速。
    从内存占用上来说,skiplist比平衡树更灵活一些。一般来说,平衡树每个节点包含2个指针(分别指向左右子树),而skiplist每个节点包含的指针数目平均为1/(1-p),具体取决于参数p的大小。如果像Redis里的实现一样,取p=1/4,那么平均每个节点包含1.33个指针,比平衡树更有优势。
  • 查找单个key,skiplist和平衡树的时间复杂度都为O(log n),大体相当;而哈希表在保持较低的哈希值冲突概率的前提下,查找时间复杂度接近O(1),性能更高一些。所以我们平常使用的各种Map或dictionary结构,大都是基于哈希表实现的。
  • 从算法实现难度上来比较,skiplist比平衡树要简单得多。

小结

  1. 各种搜索结构提高效率的方式都是通过空间换时间得到的。
  2. 跳表最终形成的结构和搜索树很相似。
  3. 跳表通过随机的方式来决定新插入节点来决定索引的层数。
  4. 跳表搜索的时间复杂度是 O(logn),插入/删除也是。

想到快排(quick sort)与其它排序算法(如归并排序/堆排序)虽然时间复杂度是一样的,但复杂度的常数项较小;跳表的原论文也说跳表能提供一个常数项的速度提升,因此想着常数项小是不是随机算法的一个特点?这也它们大放异彩的重要因素吧。

参考:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
跳表Skiplist)是一种基于链表实现的数据结构,用于快速查找和插入有序序列中的元素。它是一种随机化数据结构,可以在O(log n)的时间内完成查找、插入和删除操作。 以下是一个简单的C++实现示例: ```c++ #include <iostream> #include <cstdlib> #include <ctime> using namespace std; const int MAX_LEVEL = 16; // 最大层数 class Node { public: int key; Node **forward; Node(int level, int key) { forward = new Node*[level+1]; memset(forward, 0, sizeof(Node*)*(level+1)); this->key = key; } ~Node() { delete[] forward; } }; class SkipList { public: SkipList() { levelCount = 1; head = new Node(MAX_LEVEL, 0); srand(time(0)); } ~SkipList() { delete head; } int randomLevel() { int level = 1; while (rand() % 2 == 1 && level < MAX_LEVEL) level++; return level; } void insert(int key) { Node *update[MAX_LEVEL+1]; memset(update, 0, sizeof(Node*)*(MAX_LEVEL+1)); Node *p = head; for (int i = levelCount; i >= 1; i--) { while (p->forward[i] != nullptr && p->forward[i]->key < key) p = p->forward[i]; update[i] = p; } p = p->forward[1]; if (p != nullptr && p->key == key) return; int level = randomLevel(); if (level > levelCount) { for (int i = levelCount+1; i <= level; i++) update[i] = head; levelCount = level; } p = new Node(level, key); for (int i = 1; i <= level; i++) { p->forward[i] = update[i]->forward[i]; update[i]->forward[i] = p; } } void remove(int key) { Node *update[MAX_LEVEL+1]; memset(update, 0, sizeof(Node*)*(MAX_LEVEL+1)); Node *p = head; for (int i = levelCount; i >= 1; i--) { while (p->forward[i] != nullptr && p->forward[i]->key < key) p = p->forward[i]; update[i] = p; } p = p->forward[1]; if (p == nullptr || p->key != key) return; for (int i = 1; i <= levelCount; i++) { if (update[i]->forward[i] != p) break; update[i]->forward[i] = p->forward[i]; } delete p; while (levelCount > 1 && head->forward[levelCount] == nullptr) levelCount--; } bool search(int key) { Node *p = head; for (int i = levelCount; i >= 1; i--) { while (p->forward[i] != nullptr && p->forward[i]->key < key) p = p->forward[i]; } p = p->forward[1]; if (p != nullptr && p->key == key) return true; return false; } void display() { for (int i = 1; i <= levelCount; i++) { Node *p = head->forward[i]; cout << "Level " << i << ": "; while (p != nullptr) { cout << p->key << " "; p = p->forward[i]; } cout << endl; } } private: Node *head; int levelCount; }; int main() { SkipList skiplist; skiplist.insert(1); skiplist.insert(3); skiplist.insert(2); skiplist.insert(4); skiplist.display(); skiplist.remove(3); skiplist.display(); cout << skiplist.search(2) << endl; cout << skiplist.search(3) << endl; return 0; } ``` 在这个示例中,我们使用了一个类`Node`作为跳表中的节点,`SkipList`类则封装了跳表的插入、删除、搜索和显示等操作。其中,`randomLevel()`函数用于随机生成节点的层数,`insert()`函数用于插入一个节点,`remove()`函数用于删除一个节点,`search()`函数用于查找一个节点,`display()`函数用于显示整个跳表跳表是一种比较高级的数据结构,它可以在很多场景中代替平衡树,以提高数据结构操作的效率。如果你对跳表感兴趣,可以尝试阅读一些更深入的资料来了解更多。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值