二叉树的操作

二叉树的常用的遍历方法 :
先序遍历: 先访问根节点,左孩子 , 右孩子;
中序遍历:先访问左孩子,根节点, 右孩子;
后序访问 :先访问左孩子,右孩子,根节点;
层次遍历:从上到下,从左到右,依次遍历;
各种访问遍历的路线一样只是访问的顺序不一样;

建立二叉树

BTree makeEmpty()
{
	BTree p;
	 int c;
	 scanf_s("%d", &c);
	 if (c == -1)
 	{
		  p = NULL;
 	}
	 else
	 {
		 p = (BTree)malloc(sizeof(struct node));
		 p->data = c;
 		 p->Left = createBinaryTree();
	  	p->Right = createBinaryTree();
 	}
	 return p;

递归函数实现二叉树的遍历

void preOrderTraverse(BTree T)//先序遍历
{
	 if (T)
 	{
  		printf("%d ", T->data);  //第一次遇到节点的时候访问;
		 preOrderTraverse(T->Left);
  		preOrderTraverse(T->Right);
	 }
}
void preOrderTraverse1(BTree T)//中序遍历
{
 	if (T)
 	{
  		preOrderTraverse(T->Left);
  		printf("%d ", T->data); //走到最左边的节点,访问该节点
  		preOrderTraverse(T->Right);
	 }
}
void preOrderTraverse2(BTree T)//后序遍历
{
	 if (T)
	 {
	  preOrderTraverse(T->Left);
	  preOrderTraverse(T->Right);
 	 printf("%d ", T->data); //走到最右边的节点访问;
	 }
}

非递归函数实现二叉树的访问
使用堆栈将开始遇到的节点放入栈中

void PreOrder1(BTree T)
{
	 BTree T1 = T;
	 Stack S = creatStack();
 	while (T1 || !StackEmpty(S))
	 {
  		while (T1)
		  {
 		 	 pushStack(S, T1);  // 入栈
 		 	 // printf("%d", T1->data);   在该处访问节点,为先序访问
		  	 T1 = T1->Left;  // 继续向左
		} // 当该循环退出的时候,以访问的最左边的孩子
		  if (!StackEmpty(S))
		  {
   		  	T1 = popStack(S);  // 将栈中的第一个节点抛出
 	  		printf("%d", T1->data); // 在该处访问为中序访问
 		 	T1 = T1->Right; // 向左访问
  		}
	 }
}

层次遍历 :
1.根节点入队
2.从队列中取出一个节点
3.把取出的节点的左右孩子入队;

void translevel(BTree  BT)
{
	Queue Q;
	BTree T;
	if(!BT)
		return;
	Q = creatQueue(MAXSIZE)AddQ(Q,BT);
	while(!IsEmpty(Q))
	{
		T = DelQ(Q);
		printf("%d",T->data)if(T->Left)
			AddQ(Q,T->Left);
		if(T->Right)
			AddQ(Q,T->Right)
	}

二叉树的常用操作

int DepthOfTree(BTree T)   //求树的深度
{  
 	if (T == NULL)
	 {
		  return 0;
	 }
 	int HL, HR, MAX;
 	HL = DepthOfTree(T->Left);
 	HR = DepthOfTree(T->Right);
 	MAX = HL > HR ? HL : HR;
 	return MAX+1; 
 	// return 1+DepthOfTree(T->Left)>DepthOfTree(T->Right)?DepthOfTree					
 	(T->Left):DepthOfTree(T->Right);
}  

求叶节点的个数

int leafnum(BTree T)
{
	 if (T == NULL)
 	{
  		return 0;
	 }
	 if (T->Left == NULL && T->Right == NULL)
 	{
  		return 1;
	 }
	 return leafnum(T->Left)+leafnum(T->Right);
}

求树的节点个数

int Nodenum(BTree T)
{
	 if (T == NULL)
 	{
 		 return 0;
	 } 
	 int Lnum, Rnum, num;
 	Lnum = Nodenum(T->Left);
	 Rnum = Nodenum(T->Right);
	 num = Lnum + Rnum;
 	return num + 1;
 	//return 1+Nodenum(T->Left)+Nodenum(T->Right);
}

求两棵树是否相等

int LikeBiTree(BTree T1,BTree T2)
{
	 if (T1 == NULL && T2 == NULL)
	 {
		  return 1;
	 }
	 if (T1 == NULL || T2 == NULL)
	 {
		  return 0;
 	}
	 if (T1&&T2)
	 {
 		 if (T1->data != T2->data)
		  {
	   		return 0;
		  }
  		else
 		 {
 	 	 return (LikeBiTree(T1->Left, T2->Left) && LikeBiTree(T1->Right,T2->Right));
 		 }
 	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值