KL loss:Bounding Box Regression with Uncertainty for Accurate Object Detection解读

本文介绍了旷视2019年提出的KL Loss,用于提升目标检测的准确性,尤其是在存在不确定性的情况下。传统的边界框回归损失忽视了不确定性,而KL Loss则考虑了这一因素,通过计算预测分布与真实分布的KL散度,不仅能够捕获数据集的不确定性,还能够在后处理阶段利用学到的方差进行投票,从而提高定位的准确性。此外,该方法的可解释性使其在自动驾驶等场景中有潜在的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bounding Box Regression with Uncertainty for Accurate Object Detection

(CVPR2019, 旷视)

该论文是旷视2019年提出的,主要是使目标边框更加清晰,提升定位精度,提出了一种新的边界框回归损失,同时完成边界框变换和定位差异。在目标检测数据集中,ground-truth边界框在一些情况下存在固有的不确定性。 如下图所示,目标框(a)(c)标注不确定性,(b) 遮挡带来不确定性。(d) 目标自身边界是不确定的。由于树的遮挡,火车的左边界是不清晰的。大尺度目标检测数据集,如ImageNet、MS-COCO、CrowdHuman,都会尽量把边界框标清晰。但是边界框在有些情况下会不可避免的存在不确定性。不确定性会使标注和边界框回归函数的学习变得困难。

传统的边界框回归损失(如smooth L1 loss)并没有将边界框的不确定性考虑进去。而且边界框回归当分类分数很高的情况下被假定是准确的,但事实并不总是这样。如下图所示,两个框都是不准的,但分类分数高的边界框反而是错误的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值