Python调用高德地图web服务API实现地址与经纬度批量转换及地图可视化操作

网上在线经纬度批量转换资源(准确度稍微有偏差):

1、经纬度在线查询,地名(批量)查询经纬度,经纬度(批量)查询地名

 

2、经纬度查询,坐标拾取工具

 

高德API官方文档地址:

地理/逆地理编码https://lbs.amap.com/api/webservice/guide/api/georegeo

坐标转换http://lbs.amap.com/api/webservice/guide/api/convert

 

调用高德地图API前,需先申请高德地图keyhttps://lbs.amap.com/

申请高德地图key详细步骤https://www.jianshu.com/p/9129a5f45c99

csv文件格式:

单条地址转经纬度:

 

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:ZSW
@file:long_lat.py
@time:2020/11/07
Python调用高德地图web服务API实现地理/逆地址编码
"""

import requests
import json


def geocode(address):
    params = {'address':address,
              'key':'你的高德密钥',
              # 'city':'上海市'
              }
    url = 'https://restapi.amap.com/v3/geocode/geo'
    res = requests.get(url, params)
    # 输出结果为json,将其转为字典格式
    result = json.loads(res.text)
    # 或者直接调用json的方法,返回python下的字典数据
    # result = res.json()
    # print(result)
    res = result['geocodes'][0]['location']
    return res


if __name__=='__main__':
    address = '上海市徐汇区'
    res = geocode(address)
    print(res)

利用高德地图api实现 地址 到 经纬度 的批量转换

 

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:ZSW
@file:batch_addr_longlat.py
@time:2020/11/09
利用高德地图api实现 地址 到 经纬度 的批量转换
"""

import requests
import pandas as pd
import json


# 读取csv文件中 organization 的列,并添加在列表中,示例['地址1','地址2',……,'地址n']
def parse_csv_addr():
    datas = []
    totalListData = pd.read_csv('test.csv')
    totalListDict = totalListData.to_dict('index')
    for i in range(0,len(totalListDict)):
        datas.append(str(totalListDict[i]['organization']))
    return datas


# 地址转经纬度 选用的是地理编码的接口
def geocode(address):
    params = {
        'address': address,
        'key': '你的高德密钥',
        'city': '上海市'
    }
    url = 'https://restapi.amap.com/v3/geocode/geo'
    data = requests.get(url, params)
    result = data.json()
    res = result['geocodes'][0]['location']
    print(res)
    return res


if __name__ == '__main__':
    i = 0
    count = 0
    df = pd.DataFrame(columns=['long_lat'])
    locations = parse_csv_addr()
    for location in locations:
        long_lat = geocode(location)
        df.loc[i] = [long_lat]
        i = i + 1
    df.to_csv('locdetail1.csv', index=False, encoding='utf-8')

利用高德地图api实现 经纬度 到 地址 的批量转换

 

#!/usr/bin/python
# -*- coding: UTF-8 -*-
"""
@author:ZSW
@file:batch_longlat_addr.py
@time:2020/11/09
利用高德地图api实现 经纬度 到 地址 的批量转换
"""

import requests
import pandas as pd

# 读取csv文件,将列longitude 和列latitude 进行拼接 并添加在列表中 示例['123.57293,32.287868',……]
def parse_csv_longlat():
    datas = []
    totalListData = pd.read_csv('test.csv')
    totalListDict = totalListData.to_dict('index')
    for i in range(0, len(totalListDict)):
        datas.append(str(totalListDict[i]['longitude']) + ',' + str(totalListDict[i]['latitude']))
    return datas


# 为了使用高德服务,用户需要将非高德坐标转换为高德坐标。
# 将用户输入的非高德坐标(GPS坐标、mapbar坐标、baidu坐标)转换成高德坐标
def transform(location):
    params = {'coordsys': 'gps', 'locations': location, 'key': '你的高德密钥'}
    url = 'http://restapi.amap.com/v3/assistant/coordinate/convert'
    result = requests.get(url, params)
    res = result.json()
    return res['locations']


# 纬度转换为地址,选用的是逆地理编码的接口
def regeocode(location):
    params = {'location': location, 'key': '你的高德密钥'}
    url = 'http://restapi.amap.com/v3/geocode/regeo'
    result = requests.get(url, params)
    res = result.json()
    return res['regeocode']['addressComponent']['district'], res['regeocode'][
        'formatted_address']


if __name__ == '__main__':
    i = 0
    count = 0
    df = pd.DataFrame(columns=['location', 'detail'])
    locations = parse_csv_longlat()
    for location in locations:
        dist, detail = regeocode(transform(location))
        df.loc[i] = [dist, detail]
        i = i + 1
    df.to_csv('locdetail.csv', index=False, encoding='utf-8')

地图可视化

登录高德开放平台后, 点击头像,即可看到 数据可视化平台,点击进去,如下:

里面有相关的案例教程:

简单实例, 经纬度坐标可视化,导入csv文件,选择需要可视化的经纬度列即可(平台中一些细节配置可以自己去尝试):

 

### 使用Python实现经纬度数据的地图可视化 为了完成这一目标,通常会采用`requests`库来调用高德地图API进行经纬度转换,并借助`pyecharts`中的`Geo`组件来进行地图可视化处理[^1]。 #### 安装所需库 首先需要安装必要的Python包: ```bash pip install requests pyecharts ``` #### 获取经纬度信息 对于未知位置的具体坐标查询,可以通过向高德地图提供的地理编码API发送GET请求获取相应地点的经纬度信息。这一步骤中,申请的应用程序密钥(Key)是必需项之一,在构建URL时需将其加入参数列表内[^5]。 #### 数据准备处理 假设已经拥有一系列待可视化的地理位置名称及其对应的经度和纬度数值,则可以直接进入下一步;如果仅有地名而缺乏具体的坐标值,则应先执行上述提到的地理编码过程以补充缺失的信息。 #### 实现地图可视化 下面是一个简单的例子,展示了如何利用`pyecharts`创建基于给定经纬度坐标的中国地区热力图[^2]。 ```python from pyecharts.charts import Geo import pyecharts.options as opts from pyecharts.globals import ChartType, SymbolType # 假设已有如下形式的数据集 [(location_name, longitude, latitude), ...] data = [ ("北京", 116.4074, 39.9042), ("上海", 121.4737, 31.2304), ] def create_geo_heatmap(data): geo = ( Geo() .add_schema(maptype="china") # 设置地图类型为中国 .add( "geo", data_pair=[(item[0], item[1:]) for item in data], type_=ChartType.HEATMAP, ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( visualmap_opts=opts.VisualMapOpts(), title_opts=opts.TitleOpts(title="Heat Map of Locations"), ) ) return geo.render_notebook() # 如果是在Jupyter Notebook环境中运行此代码 create_geo_heatmap(data) ``` 这段脚本定义了一个名为`create_geo_heatmap()`的功能函数,它接受包含多个元组的位置集合作为输入参数,其中每个元组代表一个特定的城市以及其相应的经度和纬度。接着,通过配置图表选项并指定要渲染的内容为热力图(`HEATMAP`),最终实现了对中国境内若干城市的热度分布情况的有效表达。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Steven灬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值