教你彻底理解动态规划——扔鸡蛋问题 Drop Eggs2

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_40564421/article/details/78988078
有一个n层的建筑。如果一个鸡蛋从第k层及以上落下,它会碎掉。如果从低于这一层的任意层落下,都不会碎。

m个鸡蛋,用最坏的情况下实验次数最少的方法去找到k, 返回最坏情况下所需的实验次数。

样例

给出 m = 2n = 100 返回 14
给出 m = 2n = 36 返回 8

PO主宅心仁厚的把每一个步骤拆开了揉碎了给你们讲,具体细节我都在每一行的代码之上的注释里写的非常详尽。


在看下面的代码之前,PO主先结合扔鸡蛋这个例子讲下动态规划中的几个概念:


状态转移矩阵:结合下面的例子,直观上看就是一个简单的二维数组,也可以把它叫做“备忘录”,这个备忘录存了上面这个问题的所有子问题的子答案!别小看了这个备忘录,它避免了大量的重复计算。不信,你用2个递归+1个循环实现试试,有2个鸡蛋的情况下,楼层到36就已经慢得快计算不出来结果了!动态规划优势就体现在这儿了!当有很多重复子问题的时候,动态规划就是法拉利,其他暴力枚举递归等等都是QQ大众!


状态:就是备忘录里存的一个个子问题答案,可以简单把理解为:状态=答案


状态转移方程:就是写出母问题和子问题之间的关系!比如扔鸡蛋这个问题,你扔碎了,就转化成了往楼上找的子问题;你扔了没碎,那就转化成了往楼下找的子问题。


接下来就是通过一行行代码,配合每行代码上的注释来学习解动态规划的步骤!上车~

利用 动态规划JAVA实现 扔鸡蛋问题:

public class Solution {
    /*
     * @param eggs: the number of eggs
     * @param floors: the number of floors
     * @return: the number of drops in the worst case
     */
    public int dropEggs2(int eggs, int floors) {
        // write your code here
        //第一步永远是创建动态规划的备忘录,也叫状态转移矩阵
        //记住:二维数组里的length是0-start的,又因为包含层数为0或鸡蛋为0的情况,所以定义行高和列宽的时候自然要加1
        int[][] state = new int[eggs + 1][floors + 1];

        //第二步永远是考虑边界,也就是初始化动态规划的备忘录
        //先考虑eggs的边界
        for (int i=0;i<=floors;i++) {
            //首先是eggs=0的情况
            state[0][i] = 0;
            //然后是eggs=1的情况
            //eggs=1的时候,肯定是从第0层一直往上实验
            state[1][i] = i;
        }
        //再考虑floors的边界
        for (int i=1;i<=eggs;i++) {
            //首先是floors=0的情况
            state[i][0] = 0;
            //然后是floors=1的情况
            state[i][1] = 1;
        }

        //第三步就是状态方程了
        //找递推过程中的两个紧邻步骤之间的关系,如何由子结果得到母结果
        //首先,鸡蛋要从2个开始算,因为0个和1个情况你已经考虑完了
        for (int egg=2;egg<=eggs;egg++) {
            //楼层有多高要从2层起步,因为0层和1层的情况你也考虑完了
            for (int floor=2;floor<=floors;floor++) {
                //看这里!这里就是你还有egg个鸡蛋,一共有floor层的子问题!
                //这里定义一个变量来存储最终结果,找到在哪层扔能达到所扔次数最少的目标,扔鸡蛋次数多了胳膊会酸!
                int result = Integer.MAX_VALUE;
                for (int drop=1;drop<=floor;drop++) {
                    //这里!就是在当前子问题中,你从第drop层扔鸡蛋的情况!
                    //第一种情况,哎呀~碎了!那么剩下的问题就转化成了如何在drop-1层,用egg-1个鸡蛋寻找最优解
                    int broken = state[egg - 1][drop - 1];
                    //第二种请看,卧槽~没碎!问题就转化成了如果再floos-drop层,用egg个鸡蛋寻找最优解
                    int unbroken = state[egg][floor - drop];
                    //两种情况我肯定要取最大值,因为我根本不确定鸡蛋会不会碎,我特么又不是先知!
                    int condition = Math.max(broken, unbroken) + 1;
                    //不断的和上一次的结果做比较,只为得到最优的结果,最少的扔鸡蛋次数!
                    result = Math.min(condition, result);
                }
                //当前子问题(当我有egg个鸡蛋,一共有floor层时)已经for循环完了!撒花~~接下来,就是把结果存到我们的结果矩阵里了!
                state[egg][floor] = result;
            }
        }

        //以上的步骤在不断的往状态矩阵(我把它称作装满结果的大盘子!)填充结果!到这里已经都填充完毕,我们自然就可以取到我们想要的结果啦!
        return state[eggs][floors];
    }
}

如果以上思路对你理解动态规划和扔鸡蛋问题有帮助的话,请支持一下我们的知识易学计划,你捐助的每一分钱都是我们前行的动力,后续会分享更多的干货给大家!


展开阅读全文

没有更多推荐了,返回首页