LLMOps

https://github.com/tensorchord/Awesome-LLMOps
coze 、dify

LLMOps (Large Language Model Operations) solutions are tools and platforms designed to streamline the deployment, management, and optimization of large language models. Here are several LLMOps solutions similar to Co:here and Dify:

1. Weights & Biases (W&B)

Weights & Biases provides a platform for experiment tracking, model management, and hyperparameter tuning. It is widely used for managing and optimizing machine learning models, including large language models.

2. ClearML

ClearML is an open-source platform that offers experiment management, data management, and orchestration tools. It helps in managing and scaling ML workflows.
https://clear.ml/

3. Comet

Comet is an MLOps platform that provides experiment tracking, model management, and monitoring. It is designed to help data scientists and ML engineers manage their experiments and models effectively.
https://www.comet.com/site/products/llmops/

4. Neptune

Neptune is a metadata store for MLOps that allows you to log and manage all metadata generated during the development of machine learning models. It supports experiment tracking, model management, and collaboration.

5. Pachyderm

Pachyderm offers data versioning and pipeline orchestration for machine learning. It is designed to handle large-scale data and ML workflows, making it suitable for managing LLM projects.

6. Kubeflow

Kubeflow is an open-source MLOps platform that runs on Kubernetes. It provides tools for developing, orchestrating, deploying, and running scalable and portable ML workloads.

7. MLflow

MLflow is an open-source platform for managing the end-to-end machine learning lifecycle, including experimentation, reproducibility, and deployment.

8. Flyte

Flyte is a workflow automation platform for complex, mission-critical data and machine learning processes. It is designed to scale and manage large ML workflows efficiently.

9. Metaflow

Metaflow, developed by Netflix, is a human-centric framework for data science that helps in managing real-life data science projects. It simplifies the process of building and managing real-life data science projects, including large language models.

10. Valohai

Valohai is an MLOps platform that provides an end-to-end solution for machine learning model development, including experiment tracking, pipeline automation, and model deployment.

These platforms offer various features that cater to the different stages of the ML lifecycle, from experimentation and tracking to deployment and monitoring, making them suitable for managing large language models effectively.


当然,以下是一些流行的LLMOps解决方案,包括Co:here和Dify等,以及它们的主要特点:

1. Co:here

特点:

  • 模型训练与优化:提供高效的模型训练和优化工具。
  • API支持:提供简单易用的API,方便集成和使用。
  • 多语言支持:支持多种语言模型,适用于多语言应用场景。
  • 托管服务:提供托管服务,减少运维负担。

2. Dify

特点:

  • 端到端解决方案:从数据准备到模型部署,覆盖完整的ML流程。
  • 自动化:提供自动化的训练、优化和部署功能,提升工作效率。
  • 可扩展性:支持大规模数据处理和模型部署。
  • 易用性:用户友好的界面和直观的操作,降低使用门槛。

3. Weights & Biases (W&B)

特点:

  • 实验跟踪:详细记录和可视化模型训练过程。
  • 团队协作:支持团队成员共享和对比实验结果。
  • 与主流框架兼容:支持TensorFlow、PyTorch等主流框架。

4. MLflow

特点:

  • 开源:免费的开源工具,社区支持良好。
  • 集成性强:支持多个云平台和存储解决方案。
  • 模型管理:易于跟踪、部署和共享模型。

5. Kubeflow

特点:

  • 原生Kubernetes支持:专为Kubernetes设计,适合大规模部署。
  • 全面功能:涵盖从数据准备到模型部署的全流程。
  • 开源社区:活跃的开源社区,持续更新和改进。

6. Neptune.ai

特点:

  • 直观UI:用户界面友好,易于使用。
  • 实时监控:支持实时监控和记录模型性能。
  • 可视化工具:提供丰富的可视化选项,方便数据分析。

7. DVC (Data Version Control)

特点:

  • 版本控制:支持数据和模型的版本控制,类似于Git。
  • 无缝集成:与Git完美集成,适合开发者使用。
  • 开源:免费且开源,社区支持良好。

8. Hugging Face

特点:

  • 模型库:提供丰富的预训练模型和数据集。
  • Transformers库:支持主流深度学习框架(如TensorFlow和PyTorch)的集成。
  • 社区支持:活跃的开源社区,持续更新和改进。

9. Azure Machine Learning

特点:

  • 云服务:集成Azure的云服务,提供强大的计算和存储资源。
  • 自动化ML:提供自动化的机器学习工具,简化模型开发流程。
  • 集成工具:与Azure DevOps和其他Azure服务无缝集成。

10. Google Vertex AI

特点:

  • 全托管服务:提供从数据准备到模型部署的全托管服务。
  • AutoML:支持自动化模型训练和优化。
  • 集成GCP:与Google Cloud Platform其他服务紧密集成。

11. Amazon SageMaker

特点:

  • 全面功能:提供数据准备、模型训练、优化和部署的一体化解决方案。
  • AutoML:支持自动化机器学习功能。
  • 集成AWS:与AWS生态系统深度集成。

每个LLMOps解决方案都有其独特的功能和优势,选择合适的工具需要根据具体的业务需求、技术栈和预算来进行权衡和决策。


LLMOps
Arize-Phoenix - 用于LLM、视觉、语言和表格模型的ML可观察性。

deeplake - 流式处理大型多模态数据集,以实现接近100%的GPU利用率。查询、可视化和版本控制数据。无需重新计算模型微调的嵌入即可访问数据。

GPTCache - 创建语义缓存以存储LLM查询的响应。

Haystack - 快速组合应用程序,使用LLM Agents、语义搜索、问答等功能。

langchain - 通过可组合性构建使用LLM的应用程序

LlamaIndex - 提供连接LLM与外部数据的中央接口。

Weights & Biases(提示)- 开发者优先的W&B MLOps平台内的LLMOps工具套件。利用W&B Prompts可视化和检查LLM执行流程,跟踪输入和输出,查看中间结果,安全地管理提示和LLM链配置。

xTuring- 使用快速高效的微调构建和控制个人LLMs。

ZenML- 用于编排、实验和部署生产级ML解决方案的开源框架,具有内置的langchain和llama_index集成。

Dify- 开源框架旨在使开发人员(甚至非开发人员)能够基于大型语言模型快速构建有用的应用程序,确保它们可视化、可操作和可改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值