大模型微调(finetune)方法

微调方法

1、lora

2、adapter

3、prefix-tuning

4、p-tuning

5、prompt-tuning

大模型微调后灾难性遗忘

可以从数据和模型两方面去考虑。

1、通用的指令数据(数据)

主流解决大模型微调后灾难行遗忘的方法是在微调过程中加入通用的指令数据。

2、自我蒸馏方法(数据)

主要是通过模型本身对任务数据进行生成引导,构建自我蒸馏数据集,改变任务数据的信息分布,减少与原始模型信息分布的差距。
Paper: https://arxiv.org/abs/2402.13669
Github: https://github.com/sail-sg/sdft

To address the problem, we introduce Self-Distillation Fine-Tuning (SDFT),a novel approach that bridges the distribution gap by guiding fine-tuning with a distilled dataset generated by the model itself to match its original distribution.
使用模型本身生成一些蒸馏数据集,用这些数据集在来微调模型,这样的话使得模型微调是所用的数据集和

### 大型模型微调方法与最佳实践 #### 微调策略的选择依据 对于大型模型的微调,选择合适的策略至关重要。研究表明,在不使用混合精度的情况下,某些特定方法能够显著减少过拟合的风险并获得优异的结果[^1]。 #### 参数高效微调方案——LoRA的应用 针对资源受限场景下的大模型优化问题,低秩适应(Low-Rank Adaptation, LoRA)提供了一种有效的解决途径。通过仅调整少量新增加的小规模矩阵参数而非整个网络权重,可以在保持性能的同时大幅降低计算成本和内存占用。此方法已被证实能有效应用于代码理解和数学推理等多个领域,并形成了较为成熟的实施指南[^4]。 #### 差分隐私保护机制下模型训练改进措施 当涉及到敏感数据集时,差分隐私成为一个重要考量因素。为了增强模型的安全性和鲁棒性,可以采用诸如Rényi差异隐私组合以及隐私放大的技术手段来加强训练过程中的隐私保障水平。进一步探索和发展更为精确高效的算法有助于提升最终产出模型的实际应用价值[^3]。 #### 实践案例分析:MobileNetV2 和 BERT-base 的成功经验分享 具体到实际操作层面,以 MobileNetV2 及 BERT-base 这两个经典架构为例,在 ImageNet 图像识别任务及 SQuAD1.1 阅读理解测试中均实现了超越同类竞品的表现。这得益于对目标函数设计、正则化项引入等方面做出的一系列创新尝试。 ```python # 示例代码片段展示如何加载预训练模型并对指定层执行冻结处理以便后续微调工作 from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained('bert-base-uncased') for param in model.bert.parameters(): param.requires_grad = False # 冻结BERT部分参数 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值