自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 微调预训练模型方式的文本语义匹配(Further Pretraining Bert)

微调预训练模型方式的文本语义匹配(Further Pretraining Bert)今年带着小伙伴参加了天池赛道三: 小布助手对话短文本语义匹配比赛,虽然最后没有杀进B榜,但也是预料之中的结果,最后成绩在110名左右,还算能接受。言归正传,本文会解说苏剑林(苏神)的Baseline方案和代码,然后会分享我在Baseline上使用的tricks还有我们的方案和实验结果。干货Github:https://github.com/Ludong418/gaic-2021-task3资料集合:个人整理的资料大

2021-04-24 23:23:29 2325 1

原创 虚拟对抗训练(VAT)原理和代码解析

虚拟对抗训练(VAT)原理和代码解析微软在ACL20发表了一篇Adversarial Training for Large Neural Language Models,对应的代码ALUM,这是一篇首次在大规模语料做对抗式训练的语言模型研究,提出了ALUM通用的对抗式训练的算法,并且在当前预训练模型上取得SOTA。此研究目的是解决当前的预训练模型(文中用BERT和ROBERT)泛化性和鲁棒性不足的,并且当前对抗训练虽然可以增强鲁棒性,但会损害泛化性的问题。作者还指出ALUM可以在预训练和下游任务都可以使用

2021-04-01 00:44:53 5687 3

原创 关系抽取(Entity-Relation-Extraction)流水线方案

Entity-Relation-Extraction流水线方案及代码解读概要关系抽取任务(Entity Relation Extraction task)可以分为流水线方式和关联学习两种方式,本篇解读的是基于BERT预训练模型的流水线方式关系抽取方案,原作者是把整个任务分为两个模型,即关系抽取和实体识别。关系抽取为多标签分类问题,命名实体识别为序列标注问题。原始资料bert实践:关系抽取...

2020-03-28 21:06:40 5869 1

原创 如何搭建KBQA系统 —— 初识KBQA(一)

如何搭建KBQA系统(一)

2021-05-13 15:45:43 6127 11

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除