【算法导论】递归式求解的三种方法

本文转自博客:http://blog.csdn.net/qq_26010491/article/details/50616845
下面介绍求解递归式的三种方法,以下方法参考《算法导论》,图片来自网络。算法设计经常用到递归,而递归式是比较好写的,也是容易反应算法的设计思路的,我们分析含递归算法的时间复杂度就要求解递归式。

1.主方法求解递归式

    一种求解大部分递归式的公式。简洁实用,有兴趣的同学可以自己去看算法导论上的证明,这里只列举结论。

    给出递归式: T(n) = a * T(n/b) + f(n) ,其中a>=1,b>1,f(n)是给定的函数,T(n)是定义在非负整数上的递归式。
    这种方法要记忆三种情况,

将余项f(n)与函数进行比较, 直觉上来说两个函数的较大者决定了递归式的解,如果两个函数相当,则乘上一个对数因子logn。

这里要注意主方法不能求解的地方,所有的大于和小于都是多项式意义上的大于和小于,对于有些递归式夹在三种情况的间隙中,是无法用主方法来求解的。下面解释一下什么是多项式意义上的小于和大于:  

  f(x)多项式大于g(x):存在实数e>0,使得f(x)>g(x)*n^e
  f(x)多项式小于g(x):存在实数e>0,使得f(x)<g(x)*n^e

举个例子,有递归式T(n) = 2T(n/2)+nlgn, = n,nlgn/n = lgn,此时不存在e>0,使得n*lgn>n*n^e,所以就不能用主方法求解。

2.递归树求解

    用主方法求解不了的递归式,我们可以用递归树来猜测解的上界,然后用代入法来证明解的正确性。递归树的求解精确度取决于你画递归树的精确度。

     举例,

     画出它的递归树,

                                              

       这里我们把递归树扩展到T(1)的层,然后以T(1)为单位把每层的代价求和,最后就是总的代价,需要注意的是,这里需要一定的数学知识。

3.代入法

   比如我们求解,递归式T(n) = 2T(n/2)+n,我们猜测解是O(nlgn),我们要寻找到一个常数c,使得T(n)<=cnlgn

   即T(n) <= 2c(n/2)lg(n/2)+n <= cnlgn-cnlg2+n = cnlgn-cn+n

   只要c>=1,T(n)<=cnlgn,所以我们的猜测是正确的。

   要注意的是,代入法全凭经验,通常用递归树来确定上界,然后用代入法再证明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值