从头开始编写算法是一种有益的体验,当你最终点击运行的那一刻,你会了解算法背后真正发生了什么。
如果你以前用scikit-learn实现过这个算法,从头开始编写就会很容易?不是这样。
有些算法只是比其他算法更复杂,所以可以从简单的开始,比如单层感知器(Perceptron)。
本文将以感知器为案例,引导你完成从头开始编写算法的6个步骤。这种方法可以很容易地用于编写其他机器学习算法。
1. 对算法有一个基本的了解
这又回到了我最初所说的。如果你不了解基础知识,请不要从头开始处理算法。至少,你应该能够回答以下问题:
● 它是什么?
● 它通常用于做什么?
● 什么时候不能使用它?
对于感知器,上面三个问题的答案是:
● 单层感知器是最基本的神经网络,通常用于二进制分类问题(1或0,“是”或“否”)。
● 它是一个线性分类器,因此只有在存在线性决策边界的情况下才能有效使用。一些简单的用途可以是情绪分析(正面或负面反应)或贷款违约预测(“会违约”,“不会违约”)。对于这两种情况,决策边界都必须是线性的。
● 如果决策边界是非线性的,那么你实际上无法使用感知器。对于这些问题,需要使用其他算法。