- 博客(6)
- 收藏
- 关注
转载 独立开发问题记录-margin塌陷
往事如风,一周就过去了。上周在Figma里指点江山,这周在前端代码里卑微搬砖。回想上周,在Figma中排列组合,并且精确到1像素。每设计出一个页面,成就感就蹭蹭往上涨。没想到还没沾沾自喜多久,这周就要在前端代码中疯狂填坑。上周设计的多好看,这周就有多头疼。设计稿存活率:70%当然也想面向cursor编程,可是,细节方面还是不到位,得一遍遍跟它沟通才有可能达到效果。然后一看时间,3小时过去了。问题以及处理方式记录结束,又要继续投入产品开发,毕竟自己手把手设计的页面,绞尽脑汁也得去实现。
2025-07-21 08:11:49
34
转载 Manim:动画制作背后的魔法
Manim是一个功能强大的动画制作工具,它通过代码的方式定义动画,使得动画的制作更加灵活和精确。通过深入了解Manim的内部工作机制,我们可以更好地掌握如何使用它来创建出令人惊叹的动画。如果你对Manim感兴趣,可以尝试自己动手编写一些简单的动画代码,体验一下Manim的魅力!原创作者: wang_yb转载于: https://www.cnblogs.com/wang_yb/p/188819431.manim边学边做--三维图形的场景类03-16。
2025-07-07 14:04:35
41
转载 突破Excel百万数据导出瓶颈:全链路优化实战指南
在日常工作中,Excel数据导出是一个常见的需求。然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈。:某电商平台在导出百万订单时,因传统POI方案导致堆内存突破4GB,频繁触发Full GC,最终引发服务雪崩;:某物流系统导出50万运单耗时45分钟,用户多次重试导致数据库连接池耗尽;:某金融平台导出交易记录生成1.2GB文件,服务器磁盘IO飙升至100%;我们结合 EPPlus、MiniExcel 和 NPOI 的 C# 高性能 Excel 导出方案对比及实现研究一下怎么提高导出效率。
2025-06-19 19:02:54
80
转载 一文带你看透什么是ResNet
首先我们来看什么是ResNet,其全称为Residual Network(残差网络),是一种深度学习的网络结构,由微软研究院的何凯明等人于2015年提出。ResNet最大的创新在于引入了“残差模块”(Residual Block),有效地解决了深度神经网络训练中的梯度消失和表示瓶颈问题,使得网络的层数可以达到前所未有的深度,如1000层以上。核心:残差模块的核心思想是通过引入跨层链接(skip connections),将输入直接传递到输出,从而形成一种“残差学习”的机制。
2025-06-01 11:30:55
78
转载 线上救急-AWS限频
在查询高频字段(如user_id等)上设置分区键,提升查询效率并降低TCU消耗,在经过多字段比较后,统一使用用户id作为分区键,以用户维度作为数据多分区查询字段。
2025-04-26 03:48:20
38
转载 大模型部署:Rerank 模型的部署及使用
在RAG(检索增强生成)流程中,Rerank模型发挥着至关重要的作用。尽管传统的RAG能够检索出大量文档,但并非所有文档都与查询问题紧密相关。Rerank模型能够对这些文档进行再次排序和筛选,优先展示与问题更相关的文档,以此提升RAG的整体性能。本文旨在指导如何利用HuggingFace的Text Embedding In...
2024-08-12 02:20:11
2220
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅