在RAG(检索增强生成)流程中,Rerank模型发挥着至关重要的作用。尽管传统的RAG能够检索出大量文档,但并非所有文档都与查询问题紧密相关。Rerank模型能够对这些文档进行再次排序和筛选,优先展示与问题更相关的文档,以此提升RAG的整体性能。

本文旨在指导如何利用HuggingFace的Text Embedding Inference(TEI)工具来部署Rerank模型,并展示如何在LlamaIndex的RAG系统中整合Rerank功能,以增强其效果。

一、Rerank 介绍

RAG 是一种结合了信息检索和文本生成的语言模型技术。简单来说,当你向大语言模型(LLM)提出一个问题时,RAG 首先会在一个大型的文档集合中寻找相关信息,然后再基于这些信息生成回答。

Rerank 的工作就像是一个智能的筛选器,当 RAG 从文档集合中检索到多个文档时,这些文档可能与你的问题相关度各不相同。有些文档可能非常贴切,而有些则可能只是稍微相关或者甚至是不相关的。这时,Rerank 的任务就是评估这些文档的相关性,然后对它们进行重新排序。它会把那些最有可能提供准确、相关回答的文档排在前面。这样,当 LLM 开始生成回答时,它会优先考虑这些排名靠前的、更加相关的文档,从而提高生成回答的准确性和质量。通俗来说,Rerank 就像是在图书馆里帮你从一堆书中挑出最相关的那几本,让你在寻找答案时更加高效和精准。

大模型部署:Rerank 模型的部署及使用_大模型

二、Rerank 模型部署

目前可用的 Rerank 模型并不多,有 Cohere[1] 的线上模型,通过 API 的形式进行调用。开源的模型有智源的bge-reranker-base[2]、bge-reranker-large[3]。今天我们将使用 bge-reranker-large 模型来进行部署演示。

Text Embedding Inherence

我们将使用 HuggingFace 推出的 Text Embedding Inherence(以下简称 TEI)工具来部署 Rerank 模型,TEI 是一个用于部署和提供开源文本嵌入和序列分类模型的工具,该工具主要是以部署 Embedding 模型为主,但是也支持 Rerank 和其他类型的模型的部署,同时它还支持部署兼容 OpenAI API 的 API 服务。

我们先进行 TEI 的安装,安装方式有 2 种,一种是通过 Docker 方式,另外一种是通过源码安装的方式,可以同时支持 GPU 和 CPU 的机器部署。

因为 Docker 安装需要有 GPU 的服务器,而一些云 GPU 服务器不方便使用 Docker,因此我们在 Mac M1 电脑上通过源码的方式来进行安装。

首先需要在电脑上安装 Rust,建议安装 Rust 的最新版本 1.75.0,安装命令如下:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
  • 1.

然后下载 TEI 的 github 仓库,并安装相关依赖,命令如下:

git clone https://github.com/huggingface/text-embeddings-inference.git  
cd text--embeddings-inference  
cargo install --path router -F candle -F metal
  • 1.
  • 2.
  • 3.
  • 其中 router 是 TEI 仓库里面的一个目录
  • 安装成功后,可以使用text-embeddings-router --help命令来查看工具的相关参数

TEI 安装完成后,我们使用它来部署 Rerank 模型,命令如下:

text-embeddings-router --model-id BAAI/bge-reranker-large --revision refs/pr/5 --port 8080
  • 1.
  • --model-id是指模型在 Huggingface 上的 ID,revision是相关的版本号
  • --port是指服务的端口号
  • 执行命令后,TEI 会从 Huggingface 上下载模型,下载到本地路径~/.cache/huggingface/hub/models--BAAI--bge-reranker-large

服务启动后,我们可以在浏览器访问地址http://localhost:8080/docs来查看服务的 API 文档:

大模型部署:Rerank 模型的部署及使用_人工智能_02

在图中可以看到有 Rerank 的接口,我们尝试用 Curl 工具来调用该接口进行验证:

curl -X 'POST' \  
  'http://localhost:8080/rerank' \  
  -H 'accept: application/json' \  
  -H 'Content-Type: application/json' \  
  -d '{  
  "query": "What is Deep Learning?",  
  "texts": [  
    "Deep Learning is ...",  
    "hello"  
  ]  
}'  
  
# 显示结果  
[  
  {  
    "index":0,  
    "score":0.99729556  
  },  
  {  
    "index":1,  
    "score":0.00009387641  
  }  
]
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.

Rerank 的接口比较简单,只需要传问题query和相关的文档texts这 2 个参数即可,返回结果表示每个文档和问题的相似度分数,然后按照分数大小来进行排序,可以看到第一个文档与问题语义相近所以得分比较高,第二个文档和问题不太相关所以得分低。

需要注意的是,因为该模型是 Rerank 模型,所以如果是调用其中的embedding接口会报模型不支持的错误。如果你想同时拥有 Rerank 和 Embedding 的功能,可以再使用 TEI 部署一个 Embedding 模型,只要端口号不冲突就可以了。

TEI 也支持 Embedding 模型和序列分类模型的部署,其它模型的部署可以参考 TEI 的官方仓库[4],这里就不再赘述。

三、LlamaIndex 使用 Rerank 功能

我们先来看下 LlamaIndex 普通的 RAG 功能,示例代码如下:

from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader  
  
documents = SimpleDirectoryReader("./data").load_data()  
service_context = ServiceContext.from_defaults(llm=None)  
index = VectorStoreIndex.from_documents(documents, service_context=service_context)  
query_engine = index.as_query_engine()  
  
response = query_engine.query("健康饮食的好处是什么?")  
print(f"response: {response}")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • data是放我们测试文档的目录,测试文档内容待会会介绍
  • LlamaIndex 默认使用 OpenAI 的 LLM,这样的话response是 LLM 生成的答案,这里我们将llm设置为Noneresponse就只会显示传递给 LLM 的提示词模板
  • LlamaIndex 默认使用 OpenAI 的 Embedding 来向量化文档,因此需要设置环境变量OPENAI_API_KEY为你的 OpenAI API Key
  • 其他部分就是 LlamaIndex 的一个普通 RAG 代码,加载目录文档,解析分块索引保存,最后进行查询

我们再来看下测试文档内容:

$ tree data  
data/  
├── rerank-A.txt  
├── rerank-B.txt  
└── rerank-C.txt  
  
$ cat rerank-A.txt  
### 快餐的负面影响:健康与生活方式的隐忧  
快餐,一种在现代快节奏生活中极为普遍的饮食选择......  
  
$ cat rerank-B.txt  
### 选择有机,选择健康:探索有机食品的无限好处  
在今天这个注重健康和可持续生活的时代......  
  
$ cat rerank-C.txt  
### 健康饮食的益处:营养学视角的探讨  
摘要:健康饮食是维持和提升整体健康的关键......
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.

这些测试文档都是和饮食相关的文档,我们执行下代码看下结果:

# response 显示结果  
LLM is explicitly disabled. Using MockLLM.  
response: Context information is below.  
------------------file_path: data/rerank-C.txt  
  
### 健康饮食的益处:营养学视角的探讨  
摘要:健康饮食是维持和提升整体健康的关键.....  
  
file_path: data/rerank-A.txt  
  
### 快餐的负面影响:健康与生活方式的隐忧  
快餐,一种在现代快节奏生活中极为普遍的饮食选择......  
------------------Given the context information and not prior knowledge, answer the query.  
Query: 健康饮食的好处是什么?  
Answer:
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

可以看到程序会检索出和问题相似度最高的 2 个文档rerank-C.txtrerank-A.txt,但 A 文档似乎和问题关联性不大,我们可以使用 Rerank 来改进这一点。

我们需要使用 LlamaIndex 的Node PostProcessor组件来调用 Rerank 功能,Node Postprocessor 的作用是在查询结果传递到查询流程的下一个阶段之前,修改或增强这些结果。因此我们先来定一个自定义的Node PostProcessor来调用我们刚才部署的 Rerank 接口,代码如下:

import requests  
from typing import List, Optional  
from llama_index.bridge.pydantic import Field, PrivateAttr  
from llama_index.postprocessor.types import BaseNodePostprocessor  
from llama_index.schema import NodeWithScore, QueryBundle  
  
class CustomRerank(BaseNodePostprocessor):  
    url: str = Field(description="Rerank server url.")  
    top_n: int = Field(description="Top N nodes to return.")  
  
    def __init__(  
        self,  
        top_n: int,  
        url: str,  
    ):  
        super().__init__(url=url, top_n=top_n)  
  
    def rerank(self, query, texts):  
        url = f"{self.url}/rerank"  
        request_body = {"query": query, "texts": texts, "truncate": False}  
        response = requests.post(url, json=request_body)  
        if response.status_code != 200:  
            raise RuntimeError(f"Failed to rerank documents, detail: {response}")  
        return response.json()  
  
    @classmethod  
    def class_name(cls) -> str:  
        return "CustomerRerank"  
  
    def _postprocess_nodes(  
        self,  
        nodes: List[NodeWithScore],  
        query_bundle: Optional[QueryBundle] = None,  
    ) -> List[NodeWithScore]:  
        if query_bundle is None:  
            raise ValueError("Missing query bundle in extra info.")  
        if len(nodes) == 0:  
            return []  
  
        texts = [node.text for node in nodes]  
        results = self.rerank(  
            query=query_bundle.query_str,  
            texts=texts,  
        )  
  
        new_nodes = []  
        for result in results[0 : self.top_n]:  
            new_node_with_score = NodeWithScore(  
                node=nodes[int(result["index"])].node,  
                score=result["score"],  
            )  
            new_nodes.append(new_node_with_score)  
        return new_nodes
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 我们定义了一个CustomRerank类,继承自BaseNodePostprocessor,并实现了_postprocess_nodes方法
  • CustomRerank类有 2 个参数,url是我们刚才部署的 Rerank 服务地址,top_n是指返回的文档数量
  • _postprocess_nodes方法中,我们先将原始检索到的文档转化为文本列表,再和问题一起传递给 rerank方法
  • rerank方法会调用 Rerank 接口,这里要注意的是,TEI 中的 texts参数每个文档的长度不能超过 512 个字符,如果超过了会报 413 请求参数超过限制大小的错误,这时可以将truncate参数设置为True,接口会自动将过长的文档进行截断
  • 得到 Rerank 的结果后,我们根据top_n参数来截取前 N 个文档,然后返回重新排序后的文档列表

我们再来看如何在 LlamaIndex 中使用CustomRerank,代码如下:

from custom_rerank import CustomRerank  
 
......  
query_engine = index.as_query_engine(  
    node_postprocessors=[CustomRerank(url="http://localhost:8080", top_n=1)],  
)  
  
response = query_engine.query("健康饮食的好处是什么?")  
print(f"response: {response}")
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 我们在as_query_engine方法中传递了node_postprocessors参数,这里我们将CustomRerank类传递进去
  • CustomRerank类中,我们设置 Rerank 的 API 地址和 top_n 参数,这里我们设置为 1,表示只返回一个文档

修改完代码后,我们再次运行程序,可以看到结果如下:

# response 显示结果  
LLM is explicitly disabled. Using MockLLM.  
response: Context information is below.  
------------------file_path: data/rerank-C.txt  
  
### 健康饮食的益处:营养学视角的探讨  
摘要:健康饮食是维持和提升整体健康的关键.....  
  
------------------Given the context information and not prior knowledge, answer the query.  
Query: 健康饮食的好处是什么?  
Answer:
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.

可以看到这次传递给 LLM 的文档只有rerank-C.txt,Rerank 只获取了最接近问题的一个文档,这样 LLM 生成的答案就更加准确了。我们可以在CustomRerank类打印原始检索的得分和经过 Rerank 后的得分,结果如下所示:

source node score: 0.8659382811170047  
source node score: 0.8324490144594573  
-------------------rerank node score: 0.9941347  
rerank node score: 0.072374016
  • 1.
  • 2.
  • 3.
  • 4.

可以看到两者的得分是有差距的,这是因为原始检索和 Rerank 使用的模型不同,所以得到的分数也不同。

Rerank 模型可以帮助我们对检索到的文档进行重新排序,让相关的文档排在前面,并且过滤掉不相关的文档,从而提高 RAG 的效果。我们使用 HuggingFace 的 Text Embedding Inherence 工具来部署 Rerank 模型,同时演示了如何在 LlamaIndex 的 RAG 加入 Rerank 功能。


文章最后

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。