数学相关

线性筛素数

O ( n l o g l o g n ) O(nloglogn) O(nloglogn)写法:用每个数筛去他的倍数

O ( n ) O(n) O(n)写法:利用每个合数都能被表示成一系列素数积

int prime[maxn], cnt;
int vis[maxn];
void solve(int n) {
	vis[0] = vis[1] = 1;
	for (int i = 2; i <= n; ++i) {
		if (!vis[i])
			prime[cnt++] = i;
		for (int j = 0; j < cnt && i * prime[j] <= n; ++j) {
			vis[i * prime[j]] = 1;
			if (i % prime[j] == 0)
				break;
		}
	}
}

欧拉定理

参考链接

若正整数a和n互质,则 a φ ( n ) ≡ 1 ( m o d n ) a^{φ(n)}≡1(modn) aφ(n)1(modn)其中φ(n)为1~n中与n互质的数的个数

推论

若正整数a和n互质,对于任意正整数b,满足 a b ≡ a b m o d φ ( n ) ( m o d n ) a^b≡a^{bmodφ(n)}(modn) ababmodφ(n)(modn);可以用来对于求幂运算时缩小数据范围和计算次数;特别的若a和n不互质,则 a b ≡ a b m o d φ ( n ) + φ ( n ) ( m o d n ) a^b≡a^{bmodφ(n)+φ(n)}(modn) ababmodφ(n)+φ(n)(modn)

引理

对于任意互质的正整数a和n,满足 a x ≡ 1 ( m o d n ) a^x≡1(modn) ax1(modn)的最小整数 x x x φ ( n ) φ(n) φ(n)的约数

根据欧拉函数定义 ϕ ( n ) = n ∏ i = 0 s ( 1 − 1 p i ) \phi(n)=n\prod\limits_{i=0}^s(1-\frac{1}{p_i}) ϕ(n)=ni=0s(1pi1),其中 p i p_i pi n n n的质因子

int euler_phi(int n) {
  int m = int(sqrt(n + 0.5));
  int ans = n;
  for (int i = 2; i <= m; i++)
    if (n % i == 0) {
      ans = ans / i * (i - 1);
      while (n % i == 0) n /= i;
    }
  if (n > 1) ans = ans / n * (n - 1);
  return ans;
}

费马小定理

对于质数p,任意整数a,均满足 a p ≡ a ( m o d p ) a^p≡a(modp) apa(modp) ; 属于欧拉定理的特例

Miller_Rabin素数判断

  1. 利用费马小定理,对数n,若它是素数,就满足 x n − 1 ≡ 1 ( m o d n ) x^{n-1}≡1(modn) xn11(modn),我们随机几个数判断若出现结果不为1则可以判断不为素数
  2. 二次检测, n − 1 = r ∗ 2 d n-1=r*2^d n1=r2d,依次检验 r ∗ x d − 1 m o d n r*x^{d-1}modn rxd1modn的结果若为1,则只能 x = 1 , x = n − 1 x=1,x=n-1 x=1,x=n1,否则不为素数
typedef long long ll;
ll mod_mul(ll a, ll b, ll c) {
	ll rhs = 0;
	while (b) {
		if (b & 1)
			rhs = (rhs + a) % c;
		b >>= 1;
		a = (a + a) % c;
	}
	return rhs;
}
ll mod_exp(ll a, ll b, ll c) {
	ll rhs = 1;
	while (b) {
		if (b & 1)
			rhs = rhs * a % c;
		b >>= 1;
		a = a * a % c;
	}
	return rhs;
}

bool Miller_Rabin(ll n, int respat) {
	if (n == 2ll || n == 3ll || n == 5ll || n == 7ll || n == 11ll)
		return true;
	if (n == 1 || !(n % 2) || !(n % 3) || !(n % 5) || !(n % 7) || !(n % 11))
		return false;

	int k = 0;
	ll d = n - 1;
	while (!(d & 1ll)) {
		k++; d >>= 1ll;
	}
	srand((ll)time(0));
	for (int i = 0; i < respat; ++i) {
		ll a = rand() % (n - 2) + 2;
		ll x = mod_exp(a, d, n);
		ll y = 0ll;
		//二次探测,利用x^2≡1(modn)时只有x=1或x=n-1两个解
		for (int j = 0; j < k; ++j) {
			y = mod_mul(x, x, n);
			if (1ll == y && 1ll != x && n - 1ll != x)
				return false;
			x = y;
		}
		if (1ll != y)
			return false;
	}
	return true;
}

int main() {
	ll x; scanf("%lld", &x);
	if (Miller_Rabin(x, 6))
		printf("Yes\n");
	else
		printf("No\n");
}

线性同余方程

a x ≡ b ( m o d m ) ax≡b(mod m) axb(modm),转换为 a x + m y = b ax+my=b ax+my=b,使用 e x g c d exgcd exgcd求解,注意有多解

  1. 对于 a x + m y = b ax+my=b ax+my=b的有整数解的充分条件是 b ( m o d g c d ( a , m ) ) = 0 b\pmod{gcd(a, m)}=0 b(modgcd(a,m))=0
  2. 对于 x 0 , y 0 x_0,y_0 x0,y0是原式的一组解,则其他解可由 x = x 0 + b ∗ t / g c d ( a , m ) x=x_0+b*t/gcd(a, m) x=x0+bt/gcd(a,m)求解
  3. d = g c d ( a , m ) d=gcd(a,m) d=gcd(a,m),则方程在 [ 0 , m / d − 1 ] [0,m/d-1] [0,m/d1]上有唯一解
typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if(b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	ll r = exgcd(b, a % b, x, y);
	ll tmp = x;
	x = y;
	y = tmp - a / b * y;
	return r;
}
//ax = b(mod n) -> ax - ny = b
vector<ll> line_mod_quation(ll a, ll b, ll n) {
    ll x, y;
    ll d = exgcd(a, n, x, y);
    vector<ll> ans;
    ans.clear();
    if(b % d == 0) {
        x %= n; x += n; x %= n;
        ans.push_back(x * (b / d) % (n / d));
        for(int i = 1; i <= d; i++) ans.push_back((ans[0] + i *  n / d) % n);
    }
    return ans;
}

CRT

解决一元线性同余方程 x ≡ a i ( m o d m i ) x≡a_i(mod m_i) xai(modmi),其中 m i m_i mi是两两互质的数

1. 令$M=\prod_{i=1}^n{m_i}$,$Mi={\frac{M}{m_i}}$,$t_i$是$M_i*t_i≡1(modm_i)$的一个解
  1. 那么x有整数解,为 x = ∏ i = 1 n a i ∗ M i ∗ t i x=\prod_{i=1}^n{a_i*M_i*t_i} x=i=1naiMiti x为一个特解,通解可以用 x + k m ( k ∈ Z ) x+km(k \in Z) x+km(kZ)表示,最小整数解为 x   m o d   m x\bmod m xmodm
/*
x = a1(mod m1)
x = a2(mod m2)
.
x = an(mod mn)
其中m1到mn两两互质的整数
*/
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if(b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	ll r = exgcd(b, a % b, x, y);
	ll tmp = x;
	x = y;
	y = tmp - a / b * y;
	return r;
}
ll CRT(int n, int a[], int m[]) {
    ll M = 1, x = 0, xx, yy;
    for(int i = 0; i < n; i++) M *= m[i];
    for(int i = 0; i < n; i++) {
        ll w = M / m[i];
        exgcd(m[i], w, xx, yy);
        x = (x + yy * w * a[i]) % M;
    }
    return (x + M) % M;
}

exCRT

使用与 m i m_i mi不为互质的一元线性同余方程组

  1. 考虑合并 { x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) \begin{cases} x≡a_1(mod m_1)\\x≡a_2(modm_2)\end{cases} { xa1(modm1)xa2(modm2)得到 { x ≡ a 1 + m 1 y 1 x ≡ a 2 + m 2 y 2 \begin{cases} x≡a_1+m_1y_1\\x≡a_2+m_2y_2\end{cases} { xa1+m1y1xa2+m2y2也即是 m 1 y 1 + m 2 y 2 = a 2 − a 1 m_1y_1+m_2y_2=a_2-a_1 m1y1+m2y2=a2a1
  2. 使用 e x g c d exgcd exgcd解去一组可行解 ( x 1 , y 1 ) (x1,y1) (x1,y1),带回去计算出关于x的可行解 x 1 x_1 x1,则 x ≡ x 1 ( m o d m ) x≡x_1(mod m) xx1(modm),其中 m = l c m ( m 1 , m 2 ) m=lcm(m_1, m_2) m=lcm(m1,m2)
ll ex_gcd(ll a, ll b, ll& x, ll& y) {
  if (a == 0 && b == 0) return -1;  // 无最大公因数
  ll d = a;
  if (b != 0)
    d = ex_gcd(b, a % b, y, x), y -= x * (a / b);
  else
    x = 1, y = 0;
  return d;
}

// mod不满足两两互质
// 通解为 re + k*M
// 返回最小非负整数解
bool excrt(ll r[], ll m[], int n, ll& re, ll& M) {
  ll x, y;
  M = m[0], re = r[0];
  for (int i = 1; i < n; i++) {
    ll d = ex_gcd(M, m[i], x, y);
    if ((r[i] - re) % d != 0) return 0;
    x = (r[i] - re) / d * x % (m[i] / d);
    re += x * M;
    M = M / d * m[i];
    re = re % M;
  }
  re = (re + M) % M;
  return 1;
}

二次剩余

定义式子 x 2 ≡ n ( m o d p ) x^2≡n(modp) x2n(modp),给出n和p,是否存在一个式子满足该式子,即模p意义下的开根 n \sqrt n n 参考链接

  1. 钱德勒Legender符号 ( a p ) = { 1 , a 在 模 p 意 义 是 二 次 剩 余 − 1 , a 在 模 p 意 义 下 非 二 次 剩 余 0 , a ≡ 0 ( m o d p ) ({\frac{a}{p}})=\begin{cases}1,a在模p意义是二次剩余\\-1,a在模p意义下非二次剩余\\0,a≡0(modp) \end{cases} (pa)=1ap1ap0a0(modp)
  2. ( a p ) ≡ a p − 1 2   m o d   p ({\frac{a}{p}})≡a^{ {\frac{p-1}{2}}}\bmod p (pa)a2p1modp
  3. 设a是满足 w ≡ a 2 − n w≡a^2-n wa2n是模p的非二次剩余,即 x 2 ≡ w ( m o d p ) x^2≡w(modp) x2w(modp)无解,那么 x ≡ ( a + w ) p + 1 2 x≡(a+\sqrt w)^{\frac{p+1}{2}} x(a+w )2p+1是二次同余方程 x 2 ≡ n   m o d   p x^2≡n\bmod p x2nmodp的解
#define random(a,b) (rand()%(b-a+1)+a)
ll quickmod(ll a, ll b, ll c) {
	ll ans = 1;
	while (b) {
		if (b & 1)
			ans = ans * a % c;
		b >>= 1;
		a = a * a % c;
	}
	return ans;
}

ll p, w;
struct QuadraticField
{
	ll x, y;
	QuadraticField operator *(QuadraticField T) {
		QuadraticField rhs;
		rhs.x = (this->x * T.x % p + this->y * T.y % p * w % p) % p;
		rhs.x = (rhs.x + p) % p;
		rhs.y = (this->x * T.y % p + this->y * T.x % p) % p;
		rhs.y = (rhs.y + p) % p;
		return rhs;
	}
	QuadraticField operator ^(ll b) {
		QuadraticField rhs;
		QuadraticField a = *this;
		rhs.x = 1; rhs.y = 0;
		while (b) {
			if (b & 1)
				rhs = rhs * a;
			b >>= 1;
			a = a * a;
		}
		return rhs;
	}
};
ll Legender(ll a) {
	ll rhs = quickmod(a, (p - 1) / 2, p);
	if (rhs + 1 == p)
		return -1;
	else
		return rhs;
}
ll get_w(ll n, ll a) {
	return ((a * a % p - n) % p + p) % p;
}
ll solve(ll n) {
	ll a;
	if (p == 2)
		return n;
	if (Legender(n) == -1)
		return -1;
	srand((unsigned)time(NULL));
	while (true) {
		a = random(0, p - 1);
		w = get_w(n, a);
		if (Legender(w) == -1)
			break;
	}
	QuadraticField ans, rhs;
	rhs.x = a; rhs.y = 1;
	ans = rhs ^ ((p + 1) / 2);
	return ans.x;
}
int main()
{
	int t; scanf("%d", &t);
	while (t--) {
		ll n; scanf("%lld%lld", &n, &p);
		n %= p;
		if (n == 0)
			printf("0\n");
		else {
			ll ans1 = solve(n), ans2;
			if (ans1 == -1)
				printf("Hola!\n");
			else {
				ans2 = p - ans1;
				if (ans1 == ans2)
					printf("%lld\n", ans1);
				else
					printf("%lld %lld\n", min(ans1, ans2), max(ans1, ans2));
			}
		}
	}
}

原根

( a , p ) = 1 (a, p)=1 (a,p)=1时,满足 a g ≡ 1 ( m o d p ) a^g≡1(mod p) ag1(modp)的最小的 g g g正好等于 φ ( p ) φ(p) φ(p)

  1. p − 1 p-1 p1进行质因子分解得到不同的质因子 d 1 , d 2 , . . . , d m d1,d2,...,dm d1,d2,...,dm
  2. 对任意 1 < a < p 1<a<p 1<a<p,只需要检验每个质因子 a p − 1 d i a^{\frac{p-1}{d_i}} adip1这m个数中是否存在模p意义下与1同余,则a不是p的原根;否则不是
int powmod(int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1)
			res = res * a % p;
		b >>= 1;
		a = a * a % p;
	}
	return res;
}
//找原根
int generator(int p) {
	vector<int> fact;
	int phi = p - 1, n = phi;
	for (int i = 2; i * i <= n; ++i) {
		if (n % i == 0) {
			fact.push_back(i);
			while (n % i == 0)
				n /= i;
		}
	}
	if (n > 1)
		fact.push_back(n);
	for (int res = 2; res <= p; ++res) {
		bool ok = true;
		for (int factor : fact) {
			if (powmod(res, phi / factor, p) == 1) {
				ok = false;
				break;
			}
		}
		if (ok)
			return res;
	}
	return -1;
}

BSGS离散对数

关于 a x ≡ b ( m o d p ) a^x≡b (modp) axb(modp)的求解

  1. x = k m − t x=km-t x=kmt,其中 m = p m=\sqrt{p} m=p ,则原式为 a k m − t ≡ b ( m o d p ) , a k m ≡ b a t ( m o d p ) a^{km-t}≡b(modp),a^{km}≡ba^t(modp) akmtb(modp)akmbat(modp)
  2. 枚举 k , t < = m k, t<=m k,t<=m,计算 a k m a^{km} akm并记录,再计算 b a t ba^t bat检查是否已经存在
  3. 带入 x = k m − t x=km-t x=kmt
int sq = (int)sqrt(p + .0) + 1;
vector<pair<int, int>> dec(sq);
for (int i = 1; i <= sq; ++i)
	dec[i - 1] = { powmod(a, i * sq * k % (p - 1), p), i };
sort(dec.begin(), dec.end());
int any_ans = -1;
for (int i = 0; i < sq; ++i) {
	int my = powmod(a, i * k % (p - 1), n) * b % n;
	auto it = lower_bound(dec.begin(), dec.end(), make_pair(my, 0));
	if (it != dec.end() && it->first =
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、MATLAB、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、MATLAB、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、MATLAB、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、MATLAB、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、MATLAB、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。【项目资源
大学生在线租房平台管理系统按照操作主体分为管理员和用户。管理员的功能包括报修管理、报修评价管理、字典管理、房东管理、房屋管理、房屋收藏管理、房屋留言管理、房屋租赁管理、租房论坛管理、公告信息管理、留言板管理、用户管理、管理员管理。用户的功能等。该系统采用了Mysql数据库,Java语言,Spring Boot框架等技术进行编程实现。 大学生在线租房平台管理系统可以提高大学生在线租房平台信息管理问题的解决效率,优化大学生在线租房平台信息处理流程,保证大学生在线租房平台信息数据的安全,它是一个非常可靠,非常安全的应用程序。 管理员权限操作的功能包括管理公告,管理大学生在线租房平台信息,包括房屋管理,培训管理,报修管理,薪资管理等,可以管理公告。 房屋管理界面,管理员在房屋管理界面中可以对界面中显示,可以对房屋信息的房屋状态进行查看,可以添加新的房屋信息等。报修管理界面,管理员在报修管理界面中查看报修种类信息,报修描述信息,新增报修信息等。公告管理界面,管理员在公告管理界面中新增公告,可以删除公告。公告类型管理界面,管理员在公告类型管理界面查看公告的工作状态,可以对公告的数据进行导出,可以添加新公告的信息,可以编辑公告信息,删除公告信息。
基于hal库的OLED显示屏驱动C语言实现源码.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip基于hal库的OLED显示屏驱动C语言实现源码.zip
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值