没有名字

Talk is cheap. Show me the code!

《Python机器学习》读书笔记(十四)集成学习概述

Python机器学习读书笔记(十四)集成学习概述 前面的文章提到了不少机器学习算法,有些算法看起来有些“弱”而略显鸡肋,那么有没有办法让这些“弱”算法变“强”呢?答案就是集成方法 集成方法概述 本身不是一个单独的机器学习算法,而是通过训练多个分类器,然后把这些分类器组合起来,以...

2018-03-27 20:45:47

阅读数 475

评论数 2

《Python机器学习》读书笔记(十三)——正则化

Python机器学习读书笔记(十三)——正则化 前文提到了方差与偏差、使用验证曲线发现欠拟合和过拟合的问题,并提出了网格搜索、交叉验证等方法解决问题。 事实上,我们还可以通过正则化来解决这个问题。 引入 如上图所示 左边是欠拟合(高偏差)的情况,意味着模型过于简单,...

2018-03-26 20:39:31

阅读数 265

评论数 0

《Python机器学习》读书笔记(十二)网格搜索&嵌套交叉验证

Python机器学习读书笔记(十二)网格搜索&嵌套交叉验证 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 网格搜索 机器学习中的两类参数: 通过训练得到...

2018-03-25 22:33:29

阅读数 683

评论数 2

《Python机器学习》读书笔记(十一)——偏差&方差

Python机器学习读书笔记(十一)——偏差&方差 对学习算法除了通过实验估计其泛化性能,人们往往还希望了解它“为什么”具有这样的性能。“偏差-方差分解”是解释学习算法泛化性能的一种重要工具。(周志华 《机器学习》) 偏差&方差的引入...

2018-03-24 11:20:30

阅读数 637

评论数 0

《Python机器学习》读书笔记(十)机器学习模型的评价指标

Python机器学习读书笔记(十)机器学习模型的评价指标 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 前面的章节中,都是用准确性对模型进行评估。通常情况下,准确性确实是一个有效量化模...

2018-03-23 21:50:28

阅读数 502

评论数 0

《Python机器学习》读书笔记(九)——协方差矩阵

Python机器学习读书笔记(九)——协方差矩阵 前面的几篇关于降维的文章中(PCA、LDA、kPCA),多次提到了协方差矩阵,协方差矩阵简直就是一个绕不过去的坑!于是捋了捋《Python机器学习》和《机器学习》这两本书以及一些博客,准备写一写协方差矩阵。 协方差矩阵的引入 ...

2018-03-22 16:47:22

阅读数 637

评论数 0

《Python机器学习》读书笔记(八)流水线&交叉验证

Python机器学习读书笔记(八)流水线&交叉验证 1. 基于流水线的工作流 sklearn中的Pipline类,可以拟合出包含任意多个处理步骤的模型,并将模型用于新数据的预测 威斯康辛乳腺癌数据集(Breast Cancer Wisconsin):...

2018-03-21 19:11:26

阅读数 376

评论数 0

《Python机器学习》读书笔记(七)特征抽取——kPCA

Python机器学习读书笔记(七)特征抽取——kPCA 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 接上文 特征抽取 可以将原始数据集变换到一个维度更低的新的特征子空间,在尽可能多地保持相关信息的情况下,对数据进...

2018-03-20 22:15:15

阅读数 2045

评论数 0

《Python机器学习》读书笔记(六)特征抽取——LDA

Python机器学习读书笔记(六)特征抽取——LDA 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 接上文《Python机器学习》读书笔记(五)特征抽取——PCA 特征抽取 可以将原始数据集变换到一个维度更低的新的...

2018-03-19 19:13:15

阅读数 10266

评论数 0

《Python机器学习》读书笔记(五)特征抽取——PCA

Python机器学习读书笔记(五)特征抽取——PCA 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 本页代码 特征抽取 可以将原始数据集变换到一个维度更低的新的特征子空间,在尽可能多地保持相关信息的情况下,对数据进...

2018-03-18 09:54:26

阅读数 2116

评论数 1

《Python机器学习》读书笔记(四)数据预处理

Python机器学习读书笔记(四)数据预处理 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 本页代码 机器学习算法结果的优劣与数据的质量和数据中蕴含的有用信息量的数量息息相关,因此数据预处理事关重要。 1.1...

2018-03-17 15:34:44

阅读数 476

评论数 0

《Python机器学习》读书笔记(三)

Python机器学习读书笔记(三) 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 接上一篇Python机器学习读书笔记(二) 5. 支持向量机 Support Vector Machine, SVM 5.1 ...

2018-03-16 11:12:34

阅读数 143

评论数 0

《 Python机器学习》读书笔记(二)

《 Python机器学习》读书笔记(二) 说明: 关于本书: 《Python机器学习》 本笔记侧重代码调用,只描述了一些简单概念,本书的公式推导不在这里展示 1. sklearn基础 1.1 调用鸢尾花数据集 提取鸢尾花数据集的两个特征 from sklearn imp...

2018-03-15 13:07:17

阅读数 302

评论数 0

《Python机器学习》读书笔记(一)——机器学习简介

《Python机器学习》读书笔记(一) 关于本书: 《Python机器学习》 机器学习:通过对自学习算法的开发,从数据中获取知识,进而对未来进行预测。 与以往通过大量数据分析而人工推导出规则并构建模型不同,机器学习提供了一种从数据中获取知识的方法,同时能够逐步提高预测模型的性能,并将模型应用...

2018-03-14 21:24:37

阅读数 343

评论数 0

最简洁的Markdown数学公式插入方法

Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式。CSDN作为一个技术论坛,在撰写文章的时候难免需要插入数学公式。但是一个字一个字的写公式真的非常让人头疼!!下面介绍一个简洁的公式插入方法,保证让你爱不释手! 1. Markd...

2018-02-10 14:51:05

阅读数 189

评论数 0

Regression Tree 回归树

1. 引言 AI时代,机器学习算法成为了研究、应用的热点。当前,最火的两类算法莫过于神经网络算法(CNN、RNN、LSTM等)与树形算法(随机森林、GBDT、XGBoost等),树形算法的基础就是决策树。决策树因其易理解、易构建、速度快的特性,被广泛应用于统计学、数据挖掘、机器学习领域。因此,对...

2018-02-09 18:22:25

阅读数 29545

评论数 54

Python统计列表元素出现次数

1. 引言 在使用Python的时候,通常会出现如下场景: array = [1, 2, 3, 3, 2, 1, 0, 2] 获取array中元素的出现次数 比如,上述列表中:0出现了1次,1出现了2次,2出现了3次,3出现了2次。 本文阐述了Python获取元素出现次数的几...

2018-02-08 18:17:03

阅读数 36876

评论数 2

k近邻算法(kNN)

1. 前言    k-邻近算法(kNN)是机器学习中非常简洁并且易于掌握的算法,是一种用于分类和回归的非参数统计算法。    本文首先介绍k-邻近算法思想及过程,随后介绍了kNN的Python实现。全文基于机器学习实战,着重阐述作者自己的理解。此外,还参考了Scipy Lecture ...

2018-02-08 18:05:25

阅读数 166

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭