第四章 前馈神经网络习题

第四章 前馈神经网络习题

习题4-1

设损失函数为 J J J,则对于第一层的参数 w ( 1 ) w^{(1)} w(1)更新公式为
KaTeX parse error: Undefined control sequence: \part at position 9: \cfrac{\̲p̲a̲r̲t̲ ̲J }{\part w^{(1…
σ \sigma σ 1 − σ ∈ ( 0 , 1 ) 1-\sigma\in(0,1) 1σ(0,1)KaTeX parse error: Undefined control sequence: \part at position 8: \cfrac{\̲p̲a̲r̲t̲ ̲J }{\part \sigm…对于第一层的某个神经元的所有 w w w来说是一样的,所以所有 w w w的梯度符号全部是一样的,即要么都为正,要么都为负。所以当最优解的 w w w中有正有负时,该神经元的 w w w都会往一个方向更新,造成“Z”字形折现更新的现象,收敛速度会很慢。s

习题4-2
$$ h=f(W^T\vec{x}+\vec{b})\\ f=max\{0,z\}\\ y=\vec{w}^T\vec{h}+\vec{b} $$
习题4-3

比如,参数的初始化导致一些神经元在开始的时候就无法被激活,参数再迭代中也无法被更新。

又或者一旦这个神经元参数在一次迭代更新中导致wx+b<0,那么就会导致“死亡”。

修正一下ReLU函数,采用带泄露的ReLU作为激活函数
L e a k y R e L U = { x x > 0 γ x x ≤ 0 LeakyReLU=\begin{cases}x&x>0\\\gamma x&x\le0\end{cases} LeakyReLU={xγxx>0x0

习题4-4

s w i s h ( x ) = x σ ( β x ) ( s w i s h ( x ) ) ′ = σ ( β x ) + β x σ ( β x ) ( 1 − σ ( β x ) ) swish(x)=x\sigma(\beta x)\\ (swish(x))'=\sigma(\beta x)+\beta x\sigma(\beta x)(1-\sigma(\beta x)) swish(x)=xσ(βx)(swish(x))=σ(βx)+βxσ(βx)(1σ(βx))

习题4-5

如果是全连接神经网洛,则参数数量可以写为
( L − 1 ) ( N − 1 L − 1 ) ( N − 1 L − 1 + 1 ) + N − 1 L − 1 + 1 = N ( N − 1 L − 1 + 1 ) (L-1)\Big(\cfrac{N-1}{L-1}\Big)\Big(\cfrac{N-1}{L-1}+1\Big)+\cfrac{N-1}{L-1}+1\\=N\Big(\cfrac{N-1}{L-1}+1\Big) (L1)(L1N1)(L1N1+1)+L1N1+1=N(L1N1+1)

习题4-6

**题目:**证明通用近似性质对于具有线性输出层和至少一个使用ReLU激活函数的隐藏层组成的前馈神经网络,也都是适用的。

https://arxiv.org/pdf/1505.03654.pdf

证明在这篇论文中有详细证明过程,证明过程太过繁琐,超出我的能力范围。

习题4-7

精确拟合偏置所需的数据通常比拟合权重少得多。每个权重会指定两个变量如何相互作用。我们需要在各种条件下观察这两个变量才能良好地拟合权重。而每个偏置仅控制一个单变量。这意味着,我们不对其进行正则化也不会导致太大的方差。另外,正则化偏置参数可能会导致明显的欠拟合。

习题4-8

可能会出现两种问题

  • 第一,可能会导致正向传播时神经元输出全为零(比如ReLU激活函数),反向传播梯度也全为0,参数无法更新

  • 第二,即使神经元输出不为0(如Sigmoid函数),所有参数初始化为0,也会导致同一层所有神经元在训练期间学习相同的特征

习题4-9

不可以,梯度以指数级减小,增加学习率只是饮鸩止渴。甚至有可能一开始学习率过大,让它在错误的路上一去不复返

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值