基于 IFC 的桥梁病害检测模型语义丰富及可视化

本文探讨了基于IFC的桥梁病害检测模型的语义丰富和可视化技术。通过点云获取病害几何信息,使用多视图分类法的CNN进行病害识别,并提出IFC模型的语义扩充框架,将病害信息集成到BIM模型中,以提升桥梁管理系统的数据准确性。尽管目前方法在识别精度和某些场景应用上有限,但其自动化和经济效益明显,有助于桥梁的智能养护决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 集成检测数据的桥梁 BIM 模型必定会给未来的 BMS (桥梁管理系统)带来巨大的价值。


现有 BMS 的信息存储模式依托于关系型数据库,虽然这种严谨的结构化数据存储方法给系统提供了较好的鲁棒性,但舍弃了对桥梁几何信息的描述。

BIM技术已发展多年,它被视作一种便于理解的、精确的且能够同步更新的建筑构造物数字化表达方式,与 BMS 的数据需求不谋而合。然而基于现有的技术水平,利用 IFC(中性的BIM数据格式)模型作为 BMS 数据存储仓库存在以下问题:(1)缺乏一款兼容 IFC 格式的软件来按照实际检测数据更新 BIM 几何模型;(2)如何有效地获得桥梁病害的几何信息,并能够整合至 BIM 模型中对应的空间位置。为解决上述难题,本文通过点云来获得具有结构病害特征的 IFC 现状模型,然后使用基于图像的多视图分类法提取其中的病害几何特征,并提出了一种 IFC 模型语义扩充框架来将重构后的病害特征集成至 IFC 模型中,最终得到桥梁现状模型。

目前绝大多数的桥梁日常检测还是以人工的方式进行的。用自动化、系统化、定量化的三维点云评估代替人类的视觉感知是当前研究的热点。由于民用无人机的普及,使用 UAVs 获取点云数据是一个具有性价比的方法ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硬核小青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值