Codeforces Round #523 (Div. 2) C. Multiplicity (DP)

题目链接:https://codeforces.com/problemset/problem/1061/C

题目大意:

        给你数组a,下标从1开始,长度为n,现在要你找a的子序列b,使得b数组有如下性质:bi % i == 0。求这样的子序列个数。

解题思路:

        令dp[i][j]表示a1~ai中长度为j的符合条件的子序列个数,转移方程如下:

        dp[i][j] = dp[i-1][j] + dp[i-1][j-1] (a[i] % j == 0),否则dp[i][j] = dp[i-1][j]。可见状态总由i-1转移得到,可以去掉这一维,让j从后往前遍历。而且仅当a[i] % j == 0才用更新。那么我们不妨读入一个数,得到这个数的所有因数,按因数从大到小的顺序更新dp数组即可。答案即为sigma dp[i] (1 <= i <= n)。注意dp[0] = 1。空序列也算子序列。

代码如下:

# include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
typedef long long ll;
int a[maxn];
ll dp[maxn*10];
int n;

int main(){
    std::ios::sync_with_stdio(false);
    while(cin >> n){
        dp[0] = 1;
        for(int i = 1; i <= n; ++i){
            cin >> a[i];

            vector <int> cur;
            for(int j = 1; j * j <= a[i]; ++j){
                if(a[i] % j == 0){
                    cur.push_back(j);
                    if(a[i] / j != j)
                        cur.push_back(a[i] / j);
                }
            }
            sort(cur.begin(), cur.end());
            reverse(cur.begin(), cur.end());
            for(int j = 0; j < cur.size(); ++j)
                dp[cur[j]] = dp[cur[j]] + dp[cur[j]-1] % mod;
        }
        ll res = 0;
        for(int i = 1; i <= n; ++i)
            res = (res + dp[i]) % mod;
        cout << res % mod << endl;

        memset(dp, 0, sizeof(dp));
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值