题目链接:https://codeforces.com/problemset/problem/1061/C
题目大意:
给你数组a,下标从1开始,长度为n,现在要你找a的子序列b,使得b数组有如下性质:bi % i == 0。求这样的子序列个数。
解题思路:
令dp[i][j]表示a1~ai中长度为j的符合条件的子序列个数,转移方程如下:
dp[i][j] = dp[i-1][j] + dp[i-1][j-1] (a[i] % j == 0),否则dp[i][j] = dp[i-1][j]。可见状态总由i-1转移得到,可以去掉这一维,让j从后往前遍历。而且仅当a[i] % j == 0才用更新。那么我们不妨读入一个数,得到这个数的所有因数,按因数从大到小的顺序更新dp数组即可。答案即为sigma dp[i] (1 <= i <= n)。注意dp[0] = 1。空序列也算子序列。
代码如下:
# include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
typedef long long ll;
int a[maxn];
ll dp[maxn*10];
int n;
int main(){
std::ios::sync_with_stdio(false);
while(cin >> n){
dp[0] = 1;
for(int i = 1; i <= n; ++i){
cin >> a[i];
vector <int> cur;
for(int j = 1; j * j <= a[i]; ++j){
if(a[i] % j == 0){
cur.push_back(j);
if(a[i] / j != j)
cur.push_back(a[i] / j);
}
}
sort(cur.begin(), cur.end());
reverse(cur.begin(), cur.end());
for(int j = 0; j < cur.size(); ++j)
dp[cur[j]] = dp[cur[j]] + dp[cur[j]-1] % mod;
}
ll res = 0;
for(int i = 1; i <= n; ++i)
res = (res + dp[i]) % mod;
cout << res % mod << endl;
memset(dp, 0, sizeof(dp));
}
return 0;
}