数据建模的目的就是获得从自变量映射到因变量的函数,在建模的探索过程中,不同的方式总会得出不同的函数模型,而这些函数大多是由一些参数构成的,比如 y = f( x; w0, w1, w2, w3, ...)。
平方损失函数
为了选择在某种方式下最好的参数值( w0, w1, w2, w3, ...的值),这个衡量方法一般是比较原始数据与模型的预测数据之间的平方差,平方差定义为:
[(y(原始)-y(预测))**2 ] / N = [(y(原始)- f( x; w0, w1, w2, w3, ...))**2 ] / N
这个数值越小,说明模型的预测值越接近原始值,也就代表模型越好。上述表达式也称为平方损失函数。
绝对损失函数
平方损失是非常常见的选择,其他的损失函数比较适合回归,比如另一个常见的是绝对损失函数。
| y(原始)-y(预测)| / N = | y(原始)- f( x; w0, w1, w2, w3, ...)| / N
准确率
用准确率判断模型好坏比较适合分类问题,即因变量是固定的几个值,比如自变量是0或1的二分类问题。准确率