模型理论
文章平均质量分 77
理论
黄饱饱_bao
我喜欢看过世界的男生
展开
-
模型评价 - 判断数据模型拟合效果的三种方法
数据建模的目的就是获得从自变量映射到因变量的函数,在建模的探索过程中,不同的方式总会得出不同的函数模型,而这些函数大多是由一些参数构成的,比如 y = f( x; w0, w1, w2, w3, ...)。 平方损失函数为了选择在某种方式下最好的参数值( w0, w1, w2, w3, ...的值),这个衡量方法一般是比较原始数据与模型的预测数据之间的平方差,平方差定义为:[(y(...原创 2018-09-17 12:33:23 · 31180 阅读 · 0 评论 -
支持向量机 - 从原理到算法的实现
思想:寻找能够成功分开两类样本并且具有最大分类间隔的最优超平面。1.原理解析空间中任何一个平面的方程都可以表示为wx+b =0,如上图,设最优超平面方程H为wx+b=0,支持向量x-到H的距离为,要使分类间隔最大,即该距离最大,而该距离只与|w|有关,分子为一个常数,为了简单优美,设分子常数为-1...转载 2018-12-29 12:28:10 · 2479 阅读 · 0 评论 -
神经网络 - RBF神经网络与BP网络优缺点比较 - 机器学习基础知识
RBF神经网络与BP神经网络优缺点比较1. RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。但是在训练样本增多时, RBF 网络的隐层神经元数远远高于前者, ...原创 2018-07-10 17:55:38 · 25939 阅读 · 0 评论 -
轻松看懂机器学习十大常用算法 - 基础知识
通过本篇文章可以对机器学习ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。算法如下:决策树 随机森林算法 逻辑回归 SVM 朴素贝叶斯 K最近邻算法 K均值算法 Adaboost 算法 神经网络 马尔可夫1. 决策树根据一些 feature 进行分类。每个节点就对某一个 fe...原创 2018-08-17 15:37:09 · 3639 阅读 · 0 评论 -
机器学习与建模 - 聚类、分类、回归的区别
一句话概括:1. 聚类:无监督学习,学习结果将产生几个集合,集合中的元素彼此相似;2. 分类:有监督学习,学习结果将产生几个函数,通过函数划分为几个集合,数据对象是离散值;3. 回归:有监督学习,学习结果将产生几个函数,通过函数产生连续的结果,数据对象是连续值; 聚类聚类算法是无监督学习的一种算法,也就是说,并没有一批已经打好标签的数据供机器训练模型。因此该算法用于在数据中...原创 2018-09-14 09:34:41 · 13181 阅读 · 0 评论 -
模型评价 - 机器学习与建模中怎么克服过拟合问题?
上一篇博客链接: 机器学习与建模中 - 判断数据模型拟合效果的三种方法在上一篇博客中,我们谈到了使用损失函数来判断模型的拟合效果。但是拟合效果比较好的模型不一定是最好的模型,建模的最终目的是为了预测,因此预测最精准的模型才是最好的模型。提到预测,我们引入一个新的概念,叫作“泛化能力”(泛化能力是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习...原创 2018-09-27 21:38:24 · 4202 阅读 · 0 评论 -
因子分析模型
主成分分析和因子分析#包载入library(corrplot)library(psych)library(GPArotation)library(nFactors)library(gplots)library(RColorBrewer)1234567主成分分析主成分分析(PCA)...转载 2018-10-25 19:19:57 · 4824 阅读 · 0 评论 -
因子分析模型 - 因子分析法原理与代码实现 -(Python,R)
因子分析基本思想 和主成分分析相似,首先从原理上说,主成分分析是试图寻找原有自变量的一个线性组合,取出对线性关系影响较大的原始数据,作为主要成分。 因子分析,是假设所有的自变量可以通过若干个因子(中间量)被观察到。什么意思呢,举个例子,比如一个学生的考试成绩,语文80,数学95,英语79,物理97,化学94 ,那么我们认为这个学生理性思维较强,语言组织能力较弱。其中理性思维和语...原创 2018-11-20 16:42:13 · 30685 阅读 · 15 评论 -
从这十大算法开始学习机器学习与建模
本文介绍了机器学习新手需要了解的 10 大算法,包括线性回归、Logistic 回归、朴素贝叶斯、K 近邻算法等。在机器学习中,有一种叫做「没有免费的午餐」的定理。简而言之,它指出没有任何一种算法对所有问题都有效,在监督学习(即预测建模)中尤其如此。例如,你不能说神经网络总是比决策树好,反之亦然。有很多因素在起作用,例如数据集的大小和结构。因此,你应该针对具体问题尝试多种不同算法,并留出一...转载 2018-12-29 14:35:20 · 2476 阅读 · 1 评论 -
用户行为分析模型-(行为事件分析、用户留存分析、漏斗分析、行为路径分析、用户分群、点击分析)
最近有些忙,但是看到了很好的分析模型也要跟大家分享的,这篇博客有些粗糙,主要是po上一些链接供大家学习,有时间的话,我也会写出自己关于用户行为分析的理解的。下面是关于用户行为分析常见的分析维度,有助于为新手入门找到方向。1.行为事件分析模型行为事件分析法来研究某行为事件的发生对企业组织价值的影响以及影响程度。企业借此来追踪或记录的用户行为或业务过程,如用户注册、浏览产品详情页、成功投资...原创 2019-04-12 10:37:27 · 6183 阅读 · 0 评论