pillow
- 图像过滤
Pillow是Python图像处理函式库(PIL)的一个分支。Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库。
原图
from PIL import ImageFilter,Image
img_path = r'C:\Users\29146\Pictures\xiu\20151107191711_H5LwP.jpeg'
im = Image.open(img_path)
im1 = im.filter(ImageFilter.GaussianBlur)
im2 = im.filter(ImageFilter.BLUR)
im3 = im.filter(ImageFilter.BoxBlur(radius=10))
数据扩增
-
概念
数据扩增是指不实际增加原始数据,只是对原始数据做一些变换,从而创造出更多的数据。 -
目的
数据扩增的目的是增加数据量、丰富数据多样性、提高模型的泛化能力。 -
基本原则
- 不能引入无关的数据
- 扩增总是基于先验知识的,对于不同的任务和场景,数据扩增的策略也会不同。
- 扩增后的标签保持不变
-
方法
单样本扩增与多样本扩增 -
单样本扩增
图像翻转、图像旋转、图像扭曲、图像仿射变换、图像缩放、图像压缩、图像随机crop、图像随机padding、图像对比度调整、亮度调整、色度调整、饱和度调整、色彩抖动、添加噪声、图像模糊、图像区域随机擦除、风格转换、生成对抗网络生成等。 -
多样本扩增
SamplePairing和mixup,二者思路很相近
torchvision中的扩增方法:
- transforms.CenterCrop 对图片中心进行裁剪
- transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
- transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
- transforms.Grayscale 对图像进行灰度变换
- transforms.Pad 使用固定值进行像素填充
- transforms.RandomAffine 随机仿射变换
- transforms.RandomCrop 随机区域裁剪
- transforms.RandomHorizontalFlip 随机水平翻转
- transforms.RandomRotation 随机旋转
- transforms.RandomVerticalFlip 随机垂直翻转
samplePairing的扩增如下图所示:
就是两幅图像分别作基本扩增后,取均值做融合,但是标签还是A的标签。
transforms.CenterCrop的应用:
import torchivision.transforms
import PIL.Image as Image
import torchvision.transforms
#读入图片
image=Image.open(r"C:\Users\29146\Pictures\xiu\20151107191711_H5LwP.jpeg")
print(image.size, image.format, image.mode)
#生成一个CenterCrop类的对象,用来将图片从中心裁剪成224*224
crop_obj = torchvision.transforms.CenterCrop((224, 224))
image = crop_obj(image)
#将裁剪之后的图片保存下来
image.save(r"C:\Users\29146\Pictures\xiu\train_target2.png", format='PNG')
pytorch 读取数据
学习手册task2中给出这样的代码:
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):
def __init__(self, img_path, img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
# 原始SVHN中类别10为数字0
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]
data = SVHNDataset(train_path, train_label,
transforms.Compose([
# 缩放到固定尺寸
transforms.Resize((64, 128)),
# 随机颜色变换
transforms.ColorJitter(0.2, 0.2, 0.2),
# 加入随机旋转
transforms.RandomRotation(5),
# 将图片转换为pytorch 的tesntor
# transforms.ToTensor(),
# 对图像像素进行归一化
# transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
]))
接下来我们将在定义好的Dataset基础上构建DataLoder,你可以会问有了Dataset为什么还要有DataLoder?其实这两个是两个不同的概念,是为了实现不同的功能。
- Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
- DataLoder:对Dataset进行封装,提供批量读取的迭代读取
加入DataLoder后,数据读取代码改为如下:
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):
def __init__(self, img_path, img_label, transform=None):
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
# 原始SVHN中类别10为数字0
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path, train_label,
transforms.Compose([
transforms.Resize((64, 128)),
transforms.ColorJitter(0.3, 0.3, 0.2),
transforms.RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])),
batch_size=10, # 每批样本个数
shuffle=False, # 是否打乱顺序
num_workers=10, # 读取的线程个数
)
for data in train_loader:
break
在加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接。此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签。
学习过程问题
1、运用cv2.imread过程中总会出现读取照片结果为Nonetype类型
原因在于路径的使用上含有中文字符,cv2不接受中文字符的存在
2、在kaggle上要读取图像信息需要先用glob.glob()获取路径的缘由,如若直接用cv2.imread(’/kaggle/input/…’)读取,会出现none的结果
引用
https://blog.csdn.net/u012370185/article/details/90243551