文章目录
01 基本概念
Apache Flink 是一个流式处理框架,被广泛应用于大数据领域的实时数据处理和分析任务中。在 Flink 中,FileSource 是一个重要的组件,用于从文件系统中读取数据并将其转换为 Flink 的数据流。本文将深入探讨 FileSource 的工作原理、用法以及与其他数据源的比较。
02 工作原理
FileSource 是 Flink 提供的一种用于从文件系统中读取数据的源。它能够处理各种类型的文件,包括文本文件、压缩文件、序列文件等。FileSource 的工作原理可以概括为以下几个步骤:
1.文件分配(File Assignment)
在 Flink 集群中,每个任务都会负责读取文件的一个分片。FileSource 会根据文件的大小和数量将文件分配给不同的任务进行处理。
2.并行读取(Parallel Reading)
每个任务会并行地读取分配给它的文件分片。这意味着文件中的数据会被同时读取,从而提高了整体的读取速度和处理效率。
3.数据解析(Data Parsing)
读取的数据会经过解析器进行解析,将其转换为 Flink 中的数据结构,如 DataSet 或 DataStream。
4.数据分发(Data Distribution)
解析后的数据会被分发到后续的算子中进行进一步的处理和分析。
03 数据流实现
-
有界流(Bounded Streams)
有界流是指具有明确结束点的数据流,即数据流在某个时刻会结束,数据量是有限的。例如,从静态文件、数据库或有限数据集中读取的数据流就是有界流。有界流的特点包括:
- 数据量是有限的,流的结束点是已知的。
- 可以对整个数据流进行批处理式的分析和处理,因为所有数据都可用且有限。
- 可以使用批处理算法和优化技术,例如排序、分组聚合等。
-
无界流(Unbounded Streams)
无界流是指没有明确结束点的数据流,即数据流会持续不断地产生,数据量可能是无限的。例如,实时传感器数据、日志流、消息队列中的数据等都是无界流。无界流的特点包括:
- 数据源持续不断地产生数据,流没有明确的结束点。
- 通常用于实时流式处理,要求系统能够实时处理数据并在流中进行持续的分析和计算。
- 需要采用流式处理的技术和算法,例如窗口计算、流式聚合、事件时间处理等。
-
不同数据流实现
-
创建一个 File Source 时, 默认情况下,Source 为有界/批的模式;
//创建一个FileSource数据源,并设置为批模式,读取完文件后结束 final FileSource<String> source = FileSource.forRecordStreamFormat(...) .build();
-

最低0.47元/天 解锁文章
6万+

被折叠的 条评论
为什么被折叠?



