算法题(程序员面试宝典)
解题思路主要来源于leetcode官方与《程序员面试宝典》&labuladong
460. LFU 缓存
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache 类:
LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。
注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。
为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
示例:
输入:
[“LFUCache”, “put”, “put”, “get”, “put”, “get”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1); // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1); // 返回 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
// cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
// cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4); // 返回 4
// cache=[3,4], cnt(4)=2, cnt(3)=3
提示:
0 <= capacity, key, value <= 104
最多调用 105 次 get 和 put 方法
进阶:你可以为这两种操作设计时间复杂度为 O(1) 的实现吗?
解题方法
解题思路1
class LFUCache {
//kv表 key 到 value 的映射表
HashMap<Integer,Integer> keyToValue;
//kf表 key 到 frequency 的映射表
HashMap<Integer,Integer> keyToFre;
//fk表 frequency 到 key 的映射表
HashMap<Integer,LinkedHashSet<Integer>> freToKey;
//最小频次
int minFre;
//容量
int cap;
public LFUCache(int capacity) {
this.keyToValue = new HashMap<>();
this.keyToFre = new HashMap<>();
this.freToKey = new HashMap<>();
this.cap = capacity;
this.minFre = 0;
}
public int get(int key) {
//首先判断key 是否存在
if(!keyToValue.containsKey(key)){
return -1;
}
//存在更新当前 key 的fre
increaseFre(key);
//存在则返回
return keyToValue.get(key);
}
public void increaseFre(int key){
//更新 kf表 和 fk 表
//1 更新kf表
int fre = this.keyToFre.get(key);
keyToFre.put(key,fre+1);
//2 更新fk表
//2.1 先从原fre 中将key 删除
LinkedHashSet<Integer> keyList = freToKey.get(fre);
keyList.remove(key);
if(keyList.isEmpty()){
//删除fre
this.freToKey.remove(fre);
if(this.minFre==fre){
minFre = fre+1;
}
}
//2.2 在 fre+1 中添加key
this.freToKey.putIfAbsent(fre+1,new LinkedHashSet<Integer>());
this.freToKey.get(fre+1).add(key);
}
public void put(int key, int value) {
//容量为0的非法判断
if(this.cap<=0)
return;
//首先判断key value 是否存在
if(this.keyToValue.containsKey(key)){
//存在,更改值
this.keyToValue.put(key,value);
//更新fre
increaseFre(key);
return;
}
//不存在,则进行插入操作
//1 首先判断容量是否已满
if(this.keyToValue.size()>=this.cap){
//容量已满,进行删除操作
removeMinFre();
}
//容量未满 则插入
this.keyToValue.put(key,value);
this.keyToFre.put(key,1);
this.freToKey.putIfAbsent(1,new LinkedHashSet<Integer>());
this.freToKey.get(1).add(key);
//插入新值 更新 minFre
this.minFre = 1;
}
public void removeMinFre(){
//根据 minFre 在FK表中找最不太使用的key
LinkedHashSet<Integer> keyList = this.freToKey.get(this.minFre);
int key = keyList.iterator().next();
//更新FK表
keyList.remove(key);
if(keyList.isEmpty()){
this.freToKey.remove(this.minFre);
}
//更新 KV表 KF表
this.keyToValue.remove(key);
this.keyToFre.remove(key);
}
}
/**
* Your LFUCache object will be instantiated and called as such:
* LFUCache obj = new LFUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/