460. LFU 缓存

算法题(程序员面试宝典)

解题思路主要来源于leetcode官方与《程序员面试宝典》&labuladong

460. LFU 缓存

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。
注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。

示例:

输入:
[“LFUCache”, “put”, “put”, “get”, “put”, “get”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1); // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1); // 返回 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
// cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
// cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4); // 返回 4
// cache=[3,4], cnt(4)=2, cnt(3)=3

提示:

0 <= capacity, key, value <= 104
最多调用 105 次 get 和 put 方法

进阶:你可以为这两种操作设计时间复杂度为 O(1) 的实现吗?

解题方法

解题思路1

class LFUCache {

    //kv表 key 到 value 的映射表
    HashMap<Integer,Integer> keyToValue;
    //kf表 key 到 frequency 的映射表
    HashMap<Integer,Integer> keyToFre;
    //fk表 frequency 到 key 的映射表
    HashMap<Integer,LinkedHashSet<Integer>> freToKey;
    //最小频次
    int minFre;
    //容量
    int cap;

    public LFUCache(int capacity) {
        this.keyToValue = new HashMap<>();
        this.keyToFre = new HashMap<>();
        this.freToKey = new HashMap<>();
        this.cap = capacity;
        this.minFre = 0;
    }
    
    public int get(int key) {
        //首先判断key 是否存在
        if(!keyToValue.containsKey(key)){
            return -1;
        }

        //存在更新当前 key 的fre
        increaseFre(key);
        //存在则返回
        return keyToValue.get(key);
    }

    public void increaseFre(int key){
        //更新 kf表 和 fk 表
        //1 更新kf表 
        int fre = this.keyToFre.get(key);
        keyToFre.put(key,fre+1);
        //2 更新fk表
        //2.1 先从原fre 中将key 删除
        LinkedHashSet<Integer> keyList = freToKey.get(fre);
        keyList.remove(key);
        if(keyList.isEmpty()){
            //删除fre
            this.freToKey.remove(fre);
            if(this.minFre==fre){
                minFre = fre+1;
            }
        }
        //2.2 在 fre+1 中添加key
        this.freToKey.putIfAbsent(fre+1,new LinkedHashSet<Integer>());
        this.freToKey.get(fre+1).add(key);

    }
    
    public void put(int key, int value) {
        //容量为0的非法判断
        if(this.cap<=0)
            return;

        //首先判断key value 是否存在
        if(this.keyToValue.containsKey(key)){
            //存在,更改值
            this.keyToValue.put(key,value);
            //更新fre
            increaseFre(key);
            return;
        }

        //不存在,则进行插入操作
        //1 首先判断容量是否已满
        if(this.keyToValue.size()>=this.cap){
            //容量已满,进行删除操作
            removeMinFre();
        }

        //容量未满 则插入
        this.keyToValue.put(key,value);
        this.keyToFre.put(key,1);
        this.freToKey.putIfAbsent(1,new LinkedHashSet<Integer>());
        this.freToKey.get(1).add(key);
        //插入新值 更新 minFre
        this.minFre = 1;
    }

    public void removeMinFre(){
        //根据 minFre 在FK表中找最不太使用的key
        LinkedHashSet<Integer> keyList = this.freToKey.get(this.minFre);

        int key = keyList.iterator().next();
        //更新FK表
        keyList.remove(key);
        if(keyList.isEmpty()){
            this.freToKey.remove(this.minFre);
        }
        //更新 KV表 KF表 
        this.keyToValue.remove(key);
        this.keyToFre.remove(key);

    }
}

/**
 * Your LFUCache object will be instantiated and called as such:
 * LFUCache obj = new LFUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值