698. 划分为k个相等的子集

算法题(程序员面试宝典)

解题思路主要来源于leetcode官方与《程序员面试宝典》&labuladong

698. 划分为k个相等的子集

给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。

示例 1:

输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True
说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。

提示:

1 <= k <= len(nums) <= 16
0 < nums[i] < 10000

解题方法

解题思路1

从数字的视角

class Solution {
    public boolean canPartitionKSubsets(int[] nums, int k) {
        //回溯算法  路径 结束条件  选择列表
        //排除不合法情况
        if(k>nums.length)
            return false;
        int sum = 0;
        for(int i=0;i<nums.length;i++){
            sum +=nums[i];
        }
        //总和不能整除  说明不能合理分配给k个桶
        if((sum%k)!=0)
            return false;
        int target = sum/k;
        int[] bucket = new int[k];
        return backtrack(nums,0,k,target,bucket);
    }

    public boolean backtrack(int[] nums,int index,int k,int target,int[] bucket){
        //结束条件
        if(index==nums.length){
            //如果k个桶的值都等于目标值则返回true
            for(int j=0;j<bucket.length;j++){
                if(bucket[j]!=target)
                    return false;
            }
            return true;
        }

        for(int i=0;i<k;i++){
            //跳过不合法的桶
            if(bucket[i]+nums[index]>target)
                continue;
            //做出选择
            bucket[i] += nums[index];
            if(backtrack(nums,index+1,k,target,bucket)){
                return true;
            }
            //撤销选择
            bucket[i] -= nums[index];
        }
        //nums[index] 放在哪个桶中都不行
        return false;
    }
}

在这里插入图片描述

class Solution {
    public boolean canPartitionKSubsets(int[] nums, int k) {
        //回溯算法  路径 结束条件  选择列表
        //排除不合法情况
        if(k>nums.length)
            return false;
        int sum = 0;
        for(int i=0;i<nums.length;i++){
            sum +=nums[i];
        }
        //总和不能整除  说明不能合理分配给k个桶
        if((sum%k)!=0)
            return false;
        int target = sum/k;
        int[] bucket = new int[k];
        //对数组进行降序排列,对减枝进行排除
        Arrays.sort(nums);
        for(int i=0,j=nums.length-1;i<=j;i++,j--){
            int temp = nums[i];
            nums[i] = nums[j];
            nums[j] = temp;
        }
        return backtrack(nums,0,k,target,bucket);
    }

    public boolean backtrack(int[] nums,int index,int k,int target,int[] bucket){
        //结束条件
        if(index==nums.length){
            //如果k个桶的值都等于目标值则返回true
            for(int j=0;j<bucket.length;j++){
                if(bucket[j]!=target)
                    return false;
            }
            return true;
        }

        for(int i=0;i<k;i++){
            //跳过不合法的桶
            if(bucket[i]+nums[index]>target)
                continue;
            //做出选择
            bucket[i] += nums[index];
            if(backtrack(nums,index+1,k,target,bucket)){
                return true;
            }
            //撤销选择
            bucket[i] -= nums[index];
        }
        //nums[index] 放在哪个桶中都不行
        return false;
    }
}

在这里插入图片描述

解题思路2

从桶的角度

class Solution {
    public boolean canPartitionKSubsets(int[] nums, int k) {
        //从桶的视角  
        //回溯算法  路径 结束条件  选择列表
        //排除不合法情况
        if(k>nums.length)
            return false;
        int sum = 0;
        for(int i=0;i<nums.length;i++){
            sum +=nums[i];
        }
        //总和不能整除  说明不能合理分配给k个桶
        if((sum%k)!=0)
            return false;
        int target = sum/k;
        //true: used[i] 已装入桶中  false: used[i] 未装入桶中
        boolean[] used = new boolean[nums.length];

        return backtrack(nums,0,k,0,target,used);
    }

    public boolean backtrack(int[] nums,int start,int k,int bucket,int target,boolean[] used){
        //结束条件
        //每个桶都装满了
        if(k==0){
            return true;
        }
        //当前桶装满了  换下一个桶
        if(bucket==target){
            return backtrack(nums,0,k-1,0,target,used);
        }
        for(int i=start;i<nums.length;i++){
            //跳过已加入桶的元素
            if(used[i])
                continue;
            //当前第k个桶装不下num[i]
            if(nums[i]+bucket>target)
                continue;
            //做出选择
            used[i]=true;
            bucket += nums[i];
            if(backtrack(nums,i+1,k,bucket,target,used)){
                return true;
            }
            //撤销选择
            used[i] = false;
            bucket -= nums[i];
        }
        //nums[index] 放在哪个桶中都不行
        return false;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值