谷歌Gemini 1.5 Pro又双叒叕升级了?!附体验教程

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普AI工具测评AI效率提升AI行业洞察。关注我,AI之路不迷路,2024我们一起变强。

谷歌Gemini 1.5 Pro模型又双叒叕升级了!

作为谷歌的当家模型,Gemini 1.5 Pro近期可谓更新不断。先是在8月初推出了实验版本Gemini-1.5-Pro-Exp-0801,并且在发布不久就超越了当时霸榜许久的GPT-4o,冲到了LMSYS LLM排行榜的第一名。

但AI作为一个新兴科技领域,没有哪一个玩家会原地踏步。就在Gemini 1.5 Pro0801实验版本荣登榜首一周后,OpenAI就推出了基于ChatGPT的升级版GPT-4o,被称为ChatGPT-4o-latest (2024-08-08),而该模型也迅速帮助OpenAI夺回了排行榜的第一名。

而就在昨天,谷歌再次推出了升级的Gemini 1.5 Pro模型——Gemini-1.5-Pro-Exp-0827。该0827实验模型是之前的0801的升级版,谷歌AI Studio的产品负责人Logan Kilpatrick表示这一升级版本在代码和复杂任务方面有着进步。

Gemini-1.5-Pro-Exp-0827发布后,直接以1301的综合评分占领了LMSYS排行榜的第二名,第一名为上面提到过的ChatGPT-4o-latest (2024-08-08),综合分数为1316分。

LMSYS也是第一时间在社交媒体公布了最新的LLM排名,以及一些重点更新。

  1. 最新的Gemini-1.5-Flash (0827)模型表现大幅提升,整体排名从第23位跃升至第6位。

  2. 最新的Gemini-1.5-Pro (0827)模型的编码和数学能力相比之前的版本显著提高。

  3. 更小型的Gemini-1.5 Flash-8b模型的表现超过了gemma-2-9b,达到了llama-3-70b的水平。

如何使用Gemini-1.5-Pro-Exp-0827

划重点,Gemini-1.5-Pro-Exp-0827模型当前在谷歌AI Studio中可免费使用!相比ChatGPT和Claude对于上网环境的严格要求,谷歌这一顶级模型能访问谷歌就能使用,并且完全免费,不可谓不香。

谷歌AI Studio地址:https://aistudio.google.com/

用自己的谷歌账号登录AI Studio后,在右侧Model列表中选择Gemini 1.5 Pro Experiment 0827即可体验这一最新模型。

结语

已经是2024年下半年了,国外AI巨头们如OpenAI(GPT)、Anthropic(Claude)和谷歌(Gemini)的AI大模型之争依旧是打的如火如荼,虽然现在的OpenAI有点“佛系”。

那么,你有多久没有听到过国内AI大模型的进展了?


精选推荐

  1. 超越Claude 3.5 Sonnet,GPT-4o mini夺得第二名!

  2. 全民进入GPT-4时代:OpenAI强势推出GPT-4o mini!彻底取代GPT-3.5!

  3. GPT-4o mini可能没那么强,但也绝对不弱!


都读到这里了,点个赞鼓励一下吧,小手一赞,年薪百万!😊👍👍👍。关注我,AI之路不迷路,原创技术文章第一时间推送🤖。

### 关于Gemini 1.5 Flash的技术文档下载、配置与使用教程 目前关于Gemini 1.5 Flash的具体技术文档尚未公开全面的独立章节,但可以通过以下方式获取相关资源并完成配置: #### 1. **API_KEY申请流程** 为了使用Gemini的相关功能,需先通过官方渠道申请API_KEY。此过程通常涉及注册开发者账号、填写项目需求描述以及审核阶段[^1]。 #### 2. **图像标注能力集成** 对于图像识别和标注的需求,Gemini 1.5 Flash可与其他工具如Cloud Vision或Amazon Rekognition协同工作。具体实现方法包括调用其预训练模型接口,提供图片URL或二进制数据流作为输入参数,并接收返回的结果集用于进一步处理[^2]。 以下是简单的Python代码示例展示如何利用这些服务进行基本操作: ```python import requests def get_image_labels(api_key, image_url): url = "https://vision.googleapis.com/v1/images:annotate?key=" + api_key payload = { "requests": [ { "image": {"source": {"imageUri": image_url}}, "features": [{"type": "LABEL_DETECTION", "maxResults": 10}] } ] } response = requests.post(url, json=payload) return response.json() api_key = 'your_api_key_here' image_url = 'http://example.com/path/to/image.jpg' labels = get_image_labels(api_key, image_url) print(labels) ``` #### 3. **多语言支持与语义理解** 得益于Google Gemini的强大性能,在自然语言处理领域展现了卓越的表现力。无论是跨文化交流还是复杂场景下的意图捕捉均能胜任[^3]。 #### 4. **构建推荐系统案例分享** 当考虑将Gemini应用于实际业务逻辑时,比如商品个性化推送,则可能涉及到检索增强生成(Retrieval-Augmented Generation,RAG)架构的设计思路探讨。这里提到的一篇对比分析文章深入剖析了不同框架之间的优劣差异[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值