图像搜索
文章平均质量分 94
莫叶何竹
个人主页:http://myhz0606.com/
展开
-
Supervised Contrastive Learning
paperhttps://arxiv.org/abs/2004.11362githubhttps://github.com/HobbitLong/SupContrast个人博客位置http://myhz0606.com/article/SupCon1 Motivation经典的自监督对比学习方法以instance discrimination作为pretext task。在这种方法中,会对batch的图片进行数据增强,以同一图片不同的数据增强为正例,其它作为负例,以自监原创 2024-07-13 14:54:30 · 1027 阅读 · 1 评论 -
DreamSim技术小结
虽然在大量数据上训练的vision foundation model提取的embedding具备丰富的high level特征并在图像搜索等业务取得了大量成功,但模型计算的相似性和human perceptual similarity还是有一定的差距。10轮标注后,每一个三元组都有10份标注结果,若当前三元组超过6份标注结果一致,则认为该标注结果可信。通过模型预测和标注的差异来评估模型对human perceptual similarity的对齐程度。表示当前三元组的标注结果。),参考图片Ref(原创 2024-03-31 16:46:41 · 840 阅读 · 0 评论 -
Matryoshka Representation Learning技术小结
来映射到表征空间,再接入一个classifier(也是个全连接层)得到该图片在类别上的概率分布。用这个方法训练,一次训练我们只能得到一种维度的图片表征(如图中是2048维))这篇paper介绍了一个很简单但有效的方法能实现一次训练,获取不同维度的表征提取。不同维度的表征在imagenet1K上linear classification和1-NN的准确率。为了一次训练获得不同维度的图片表征,最简单粗暴的方法就是我们可以用多个。和Classifier进行分片,从而实现不同维度的表征训练。更多实验结果见原论文。原创 2024-02-28 18:11:52 · 1091 阅读 · 1 评论 -
Google Universal Image Embedding前五名方案小结
leaderboard排名。原创 2024-02-28 18:08:14 · 1011 阅读 · 0 评论