【开源】Python+AI让静态图片动起来

哈喽,大家好。

大家在刷短视频的时候有没有刷到这样的视频,视频里一张静态的人物图片能动起来,如:歪歪头、眨眨眼。

类似于下面这种效果

aad147f19d769d02d35e7ff2c1c7c3c5.gif

最左侧的人物是原始的动作,上面是静态图片。通过AI技术便可以让最左侧人物的动作运用到上面的静态图片上,从而让张图都可以做出相同的动作。

这种技术一般是基于的GAN(生成对抗网络)来实现,今天我给大家分享一个开源项目,能够复现上面的效果,可以做些有趣的项目,也可以怀念故人。

1. 运行项目

项目地址:https://github.com/AliaksandrSiarohin/first-order-model

首先,git clone将项目下载到本地,进入项目安装依赖

git clone https://github.com/AliaksandrSiarohin/first-order-model.git
cd first-order-model
pip install -r requirements.txt

然后,在项目首页Pre-trained checkpoint标题下,找到模型下载链接,下载模型文件,模型有很多,我用的是vox-adv-cpk.pth.tar

准备好模型文件后,在项目根目录下执行下面命令即可

python demo.py  \
  --config config/vox-adv-256.yaml \
  --driving_video src_video.mp4 \
  --source_image src_img.jpg \
  --checkpoint weights/vox-adv-cpk.pth.tar

解释下参数:

  • --config:模型配置文件,在源文件中有

  • --driving_video:提供动作的视频

  • --source_image:需要加动效的静态图片

  • --checkpoint:刚刚下载的模型文件

运行完成后,会看到如下输入

15ff048f61c7a5ecc7dc9dab4ed28cc7.png

该项目使用PyTorch搭建神经网络,支持GPUCPU运行,所以如果你的电脑只有CPU,运行会比较慢。

我是在CPU下运行的,从上图可以看到,driving_video只有 31 帧。如果你也是CPU运行,最好控制driving_video视频的时长,不然运行时长会比较长。

有了该项目,可以自己做些比较有意思的尝试

bb3d56444b147494779e206fed21f715.gif

2. Python API

上面教大家按照官网在命令行运行该项目。

有些朋友可能想在Python项目中调用,所以我在demo.py中抽取了核心代码,封装了一个Pyhton API

fa2aab1092ee3093f40f4b4e5a10550b.png

有需要的朋友可以下载这个文件,放到与first-order-model同一级的目录下,按照下面代码调用即可

fom = FOM()
# 查看驱动视频,驱动视频最好裁剪为480 x 640 大小的视频
driving_video = ''
# 被驱动的画面
source_image = ''
# 输出视频
result_video = ''
# 驱动画面
fom.img_to_video(driving_video, source_image, result_video)

最后,感谢你的关注,我将持续分享优秀的 AI 项目。如果本文对你有用就点个 在看 鼓励一下吧。

END

推荐阅读



牛逼!Python常用数据类型的基本操作(长文系列第①篇)
牛逼!Python的判断、循环和各种表达式(长文系列第②篇)

牛逼!Python函数和文件操作(长文系列第③篇)

牛逼!Python错误、异常和模块(长文系列第④篇)

吴恩达deeplearining.ai的经典总结资料
Ps:从小程序直接获取下载
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要入门Python编程和人工智能,我们需要先掌握Python基础知识。Python是一种易学易用的编程语言,其简洁的语法和丰富的库和工具使其成为了人工智能领域的重要工具。 首先,我们可以从学习Python的基础语法开始。可以通过在线教程、书籍或者参加编程培训班来学习Python的基础知识,包括变量、数据类型、流程控制、函数和面向对象编程等。 了解了Python基础后,我们可以进一步学习Python的科学计算库,如NumPy和SciPy。这些库提供了很多强大的数学和科学计算功能,对于人工智能算法的实现非常有用。 接下来,可以学习Python的机器学习库,如scikit-learn和TensorFlow。scikit-learn是一个用于机器学习的强大库,包括常见的机器学习算法和工具。TensorFlow是Google开发的一个开源深度学习库,它提供了强大的工具来构建和训练神经网络。 除了基本的Python和机器学习库,了解一些数据处理和可视化的工具也是很重要的。例如,Pandas是一个用于数据处理和分析的库,Matplotlib和Seaborn则提供了绘制图表和可视化数据的功能。 此外,还可以参加一些在线课程和MOOC(大规模开放式在线课程),如Coursera上的《机器学习》课程,来学习更高级的人工智能算法和应用。 最后,通过实践项目来巩固所学知识。选择一些小型的项目,如使用机器学习算法识别手写数字或者构建一个简单的聊天机器人,来应用所学的Python人工智能知识。 总之,要入门Python编程和人工智能,需要先学习Python基础知识,然后学习各种相关的库和工具,并通过实践项目来巩固所学知识。随着不断的学习和实践,我们可以逐渐掌握Python编程和人工智能的技能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值