HDU 3555 Bomb(数位dp )

Problem Description

The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence “49”, the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?

Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.

Output
For each test case, output an integer indicating the final points of the power.

Sample Input

3
1
50
500

Sample Output

0
1
15
Hint
From 1 to 500, the numbers that include the sub-sequence “49” are “49”,“149”,“249”,“349”,“449”,“490”,“491”,“492”,“493”,“494”,“495”,“496”,“497”,“498”,“499”, so the answer is 15.

题目链接
参考题解

题目:求 0 到 n 中含有 49 的数字的个数。
对此我们可以定义dp[i][j]意义如下:

  • dp[i][j]:长度为i的数的第j种状态
  • dp[i][0]:长度为i但是不包含 49 的方案数
  • dp[i][1]:长度为i且不含 49 但是以 9 开头的数字的方案数
  • dp[i][2]:长度为i且包含 49 的方案数

我们这里采用初始化的方法,就是将dp数组都先记录好。这里面包括了三个状态:

  • 0:遍历到这一位的时候,前面没出现过 49
  • 1:遍历的这一位是 9,再遍历下一位如果是 4,组合成 49。
  • 2:以前遍历的已经出现过 49

那么状态转移就是这样了:

  • dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1]; // 如果不含49且,在前面可以填上 0-9 但是要减去dp[i-1][1] 因为4会和9构成49
  • dp[i][1] = dp[i-1][0]; // 这个直接在不含49的数上填个9就行了
  • dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // 已经含有49的数可以填0-9,或者9开头的填4

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL;
LL dp[27][3];
int digit[27];
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数

void init() {
    memset(dp, 0, sizeof(dp));
    dp[0][0] = 1;
    // 遍历数字的位数
    for(int digitNum = 1; digitNum <= 20; digitNum++) {
        dp[digitNum][0] = dp[digitNum - 1][0] * 10 - dp[digitNum - 1][1];    //如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
        dp[digitNum][1] = dp[digitNum - 1][0];    //这个直接在不含49的数上填个9就行了
        dp[digitNum][2] = dp[digitNum - 1][1] + dp[digitNum - 1][2] * 10;    //已经含有49的数可以填0-9,或者9开头的填4
    }
    return ;
}

int Cal(LL num) {
    int len = 0;
    memset(digit, 0, sizeof(digit));
    while(num) {
        digit[++len] = num % 10;
        num /= 10;
    }
    return len;
}

void Solve(int len, int n) {
    bool flag = false;  //标记是否出现过49
    LL ans = 0;
    for(int DigitNum = len; DigitNum >= 1; DigitNum--) {
        ans += digit[DigitNum] * dp[DigitNum - 1][2];
        if(flag)
            ans += digit[DigitNum] * dp[DigitNum - 1][0];
        else if(digit[DigitNum] > 4)
            ans += dp[DigitNum - 1][1];
        if(digit[DigitNum] == 9 && digit[DigitNum + 1] == 4)    flag = true;
    }
    cout << ans << endl;
}

int main() {
    int CaseNum;
    LL n;
    init();
    cin >> CaseNum;
    while(CaseNum--) {
        scanf("%lld", &n);
        int len = Cal(n + 1);
        Solve(len, n);
    }
    return 0;
}

此外,除了可以使用打表DP数组的方法,还可以使用递归的方法,但是这个时候dp数组的含义也发生了变化:

  • 其他状态没有变化,但是状态 1 的含义变为了在当前位之前是否出现过4。

这里需要注意的是,一定不要和上一个方法混淆。初始化打表的方法,是从低位往高位计算,即假设对 12345 进行计算,则打表会从最低位5计算,直到最高位1。而递归的方式将从最高位1往最低位5进行递归计算。

如果不能理解可以这样想:

  • 对打表的动态规划,我们只有知道了低位的状态,才能推出来高位的状态。
  • 递归的方式,我们可以将低位的状态计算交给递归,等递归算出来再推当前位的状态。其实本质也是需要现有低位再推高位,只是我们把低位的工作交给了递归。

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

#define DEBUG

long long dp[27][3];
int digit[27];
int digitLen;
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是前一位为4
//dp[i][2]:长度为i且包含49的方案数

void getDigit(int x) {
    digitLen = 0;
    while(x) {
        digit[++digitLen] = x % 10;
        x /= 10;
    }

    #ifdef DEBUG
    printf("=======================================\n");
    printf("Split digit number.\n");
    printf("=======================================\n");
    for (int i = digitLen; i; i--) {
        printf(i ? " %d": "%d", digit[i]);
    }
    printf("\n");
    #endif
}

long long countNumbersWith49(int len, int status, bool limit) {
    #ifdef DEBUG
    if (len == digitLen) {
        printf("=======================================\n");
        printf("Count numbers with 49.\n");
        printf("=======================================\n");
    }
    #endif
    if (!len) return status == 2;
    if (!limit && dp[len][status] != -1) return dp[len][status];
    long long ret = 0;
    int _end = limit ? digit[len] : 9;
    for (int i = 0; i <= _end; i++) {
        // try every digit number
        if (status == 2 || (status == 1 && i == 9)) {
            ret += countNumbersWith49(len - 1, 2, limit && (i == _end));
        } else if (i == 4) {
            ret += countNumbersWith49(len - 1, 1, limit && (i == _end));
        } else {
            ret += countNumbersWith49(len - 1, 0, limit && (i == _end));
        }
    }
    if (!limit) dp[len][status] = ret;
    #ifdef DEBUG
    printf("Len: %d, Status: %d, Limit: %s, Numbers: %lld\n", len, status, limit ? "true" : "false", ret);
    #endif
    return ret;
}

int main() {
    int n;
    long long range;

    memset(dp, -1, sizeof(dp));
    scanf("%d", &n);
    while (n--) {
        scanf("%lld", &range);
        getDigit(range);
        printf("%lld\n", countNumbersWith49(digitLen, 0, true));
    }
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值