python数据分析与展示-NumPy库入门


北理工嵩天老师的慕课课程 《python数据分析与展示》学习笔记!

1. 数据的维度

一个数据表达一个含义,一组数据表达一个或多个含义,为了描述一组数据所表示的含义,我们需要引入“维度”这一概念。对于一组数据,即可以在一维方向上展开,形成一个线性关系,也可以在二维的方向上展开,表示两个不同的含义。

一维数据:

一维数据由对等关系的有序或无序数据构成,采用线性方式组织。
对应python列表、数组和集合等概念。

列表和数组都是一组数据的有序结构

列表:数据类型可以不同
数组:数据类型必须相同

[3.12,3.22,3.56,3.67] # 列表类型,有序
{3.12,3.22,3.56,3.67} # 集合类型,无序

二维数据:

二维数据由多个一维数据构成,是一维数据的组合形式。
表格是典型的二维数据!

[[3.12,3.22,3.56,3.67],[3.31,3.55,3.78,3.90]] # 列表类型,有序

多维数据

多维数据是由一维数据或二维数据在新维度上扩展形成。

高维数据

高位数据仅利用最基本的二元关系展示数据间的复杂结构。

2. NumPy库

NumPy的引用:

import NumPy as np

NumPy 中提供了一个强大的n维数组对象:ndarray

  1. 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据。
  2. 设置专门的数组对象,进过优化,可以提升这类应用的运算速度。

例如:计算A2+B3,其中A和B是一位数组。从程序可以看到,ndarray要由于python常规方法的。

import NumPy as np
def pySum1():
    a = [0, 1, 2, 3, 4]
    b = [5, 6, 7, 8, 9]
    c = []
    for i in range(len(a)):
        c.append(a[i]**2+b[i]**3)
    return c

def pySum2():
   	a = np.array[0, 1, 2, 3, 4]
    b = np.array[5, 6, 7, 8, 9]
    c = a**2 + b**3
    return c
    
print(pySum1())
print(pySum2())

2.1 ndarray的引入

ndarray是一个多维数组对象,由两部分组成:实际的数据,描述这些数据的元数据(数据维度、数据类型等)。ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始。其基本运算属性如下:

属性说明
.ndim秩,即轴的数量或维度的数量
.shapendarrary对象的尺度,对于矩阵,n行m列
.sizendarrary对象元素的个数,相当于.shape中n*m的值
.dtypendarrary对象的元素类型
.itemsizendarrary对象中每个元素的大小,以字节为单位
>>> a = np.array([[0,1,2,3,4],[9,8,7,6,5]])
>>> a.ndim
2
>>> a.shape
(2, 5)
>>> a.size
10
>>> a.dtype
dtype('int32')
>>> a.itemsize
4

ndarray 支持多种元素类型,可以对元素类型进行精确定义,有助于NumPy合理使用存储空间并优化性能,同时可以满足大量数据的科学计算的要求:

数据类型(有符号数)说明数据类型说明
bool布尔类型,True或Falseuint88位无符号整数,取值[0,255]
intc与C语言中的int类型一致,一般是int32或int64uint1616位无符号整数,取值[0,65535]
intp用于索引,与C中ssize_t一致,int32或int64uint3232位无符号整数,取值[0,2^32-1]
int8字节长度的整数,取值[-128,127]uint6464位无符号整数,取值[0,2^64-1]
in1616位长度的整数,取值[-32768,32767]float1616位半精度浮点数:1位符号位,5位指数,10位尾数
int3232位长度的整数,取值[-2^32, 2^32 -1]float32326位半精度浮点数:1位符号位,8位指数,23位尾数
int6464位长度的整数,取值[-2^63, 2^63 -1]float6464位半精度浮点数:1位符号位,11位指数,52位尾数
complex64复数类型,实部和虚部都是32位浮点数complex128复数类型,实部和虚部都是64位浮点数

2.2 ndarray数组的创建

(1)从python中的列表、元组等类型创建ndarray数组。

x = np.array(list/tuple, dtype=np.float32)
当np.array()不指定dtype时,NumPy将根据数据情况关联一个dtype类型。

>>> x = np.array([1,2,3,4])
>>> print(x)
[1 2 3 4]
>>> x = np.array((1,2,3,4))
>>> print(x)
[1 2 3 4]
>>> x = np.array([[1,2,3,4],(5,6,7,8)])
>>> print(x)
[[1 2 3 4]
 [5 6 7 8]]
(2) 使用NumPy中函数创建ndarray数组

如:arange,ones,zeros等。

函数说明
np.arange(n)类似range()函数,返回ndarray类型,元素从0到n-1
np.ones(shape)根据shape生成一个全1数组,shape是元组类型
np.zeros(shape)根据shape生成一个全0数组,shape是元组类型
np.full(shape, value)根据shape生成一个数组,每个元素值都为value
np.eye(n)创建一个正方的n*n单位矩阵,对角线为1,其余为0

shape是从数组的最外层到最内层的数据维度的表示方式
除了arange()函数,其他的生成的都是 浮点类型的数,除非使用dtype来声明数据类型

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.ones((3,6))
array([[1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.]])
>>> np.eye(3, dtype=np.int32)
array([[1, 0, 0],
       [0, 1, 0],
       [0, 0, 1]])
函数说明
np.ones_like(a)根据数组a的形状生成一个全1数组
np.zeros_like(a)根据数组a的形状生成一个全0数组
np.full_like(a, val)根据数组a的形状生成一个数组,每个元素值都是val
(3)使用NumPy中其他函数创建ndarray数组。
函数说明
np.linspace(a,b,c)根据起止数据等间距地填充数据,形成数组 (在a~b之间生成c个数)
np.concatenate()将两个或多个数组合并为一个数组

在linspace()函数中,可以加入参数“endpoint=False”,表示最后一个元素b将不被包含在生成的c个元素之中。

>>> a = np.linspace(1,10,4)
>>> a
array([ 1.,  4.,  7., 10.])
>>> b = np.linspace(1,10,4,endpoint=False)
>>> b
array([1.  , 3.25, 5.5 , 7.75])
>>> c = np.concatenate((a,b))
>>> c
array([ 1.  ,  4.  ,  7.  , 10.  ,  1.  ,  3.25,  5.5 ,  7.75])

对于创建后的ndarray数组,可以对其进行维度变换和元素类型变化:

方法说明
.reshape(shape)不改变数组元素,返回一个shape形状的数组,原数组不变
.resize(shape)与.reshape()功能一致,但修改原数组
.swapaxes(ax1,ax2)将数组n个维度中两个维度进行调换
.flatten()对数组进行降维,返回折叠后的一维数组,原数组不变
.astype()对数组元素类型进行改变,返回一个新的数组,原数组不变

要注意这些方法是否改变了原数组,同时要保证和原数组的元素总数保持一致!
astype()方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致。
解释“np.int”:表示整数类型,程序会将元素解析为整数,但具体位数由程序自动调节。

>>> a = np.ones((2,3,4),dtype=np.int32)
>>>
>>> a.reshape((3,8))
array([[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1]])
>>> a
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]])
>>>
>>> a.resize((3,8))
>>> a
array([[1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1]])

此外,我们可以使用“ls = a.tolist()”方法,将数组转换为列表!

>>> a = np.ones((2,3,4),dtype=np.int32)
>>> b = a.tolist()
>>> b
[[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]

2.3 ndarray数组的操作

数组的索引:获取数组中特定位置元素的过程
数组的切片:获取数组元素子集的过程

(1) 一维数组的索引和切片:

提供了从编号0开始向右递增和从编号-1开始向左递减的两种方式!
索引:a[位置编号]
切片:a[起止编号: 终止编号(不含): 步长] ,三个元素以冒号分割

>>> a = np.array([0,1,2,3])
>>> a[3]
3
>>> a[0:3:2]
array([0, 2])
(2) 多维数组的索引和切片:

索引:[第一个维度的索引, 第二个维度的索引, 第三个维度的索引] ,每个维度一个索引,以逗号分割!其中[-a, -b, -c]表示倒数第a组中的倒数第b组的倒数第c个元素。
切片:[第一个维度的切片, 第二个维度的切片, 第三个维度的切片],在每个维度上给出一个切片空间,每个维度内部切片方式和一维是一样的。

>>> a = np.arange(24).reshape((2,3,4))
>>> a[0,1,3]
7
>>> a[-1,-2,-3]
17
>>> #切片↓,这块要好好理解下。
>>> a[:, 1, -3]
array([ 5, 17])
>>> a[:, 1:3, :]
array([[[ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> a[:, :, ::2]
array([[[ 0,  2],
        [ 4,  6],
        [ 8, 10]],

       [[12, 14],
        [16, 18],
        [20, 22]]])

2.4 ndarray数组的运算

(1) 数组与标量之间的运算:

数组与标量之间的运算作用于数组的每一个元素。

>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

>>> a.mean()
11.5
>>> a = a/a.mean()
>>> a
array([[[0.        , 0.08695652, 0.17391304, 0.26086957],
        [0.34782609, 0.43478261, 0.52173913, 0.60869565],
        [0.69565217, 0.7826087 , 0.86956522, 0.95652174]],

       [[1.04347826, 1.13043478, 1.2173913 , 1.30434783],
        [1.39130435, 1.47826087, 1.56521739, 1.65217391],
        [1.73913043, 1.82608696, 1.91304348, 2.        ]]])
(2) NumPy一元函数:
函数说明函数说明
np.abs(x) np.fabs(x)计算数组各元素的绝对值np.rint(x)计算数组各元素的四舍五入值
np.sqrt(x)计算数组各元素的平方根np.modf(x)将数组各元素的小数和整数部分以两个独立数组的形式返回
np.square(x)计算数组各元素的平方np.exp(x)计算数组各元素的指数值
np.ceil(x) np.floor(x)计算数组各元素的ceiling或floor值np.sign(x)计算数组各元素的符号值,1(+),0,-1(-)
np.log(x)
np.log10(x) np.log2(x)
数组各元素的自然对数、10底对数和2底对数np.cos(x)np.cosh(x)
np.sin(x)np.sinh(x)
np.tan(x)np.tanh(x)
数组各元素的普通型和双曲型三角函数

注意:这里的a并未真的被改变!

>>> a = np.arange(24).reshape((2,3,4))
>>> np.square(a)
array([[[  0,   1,   4,   9],
        [ 16,  25,  36,  49],
        [ 64,  81, 100, 121]],

       [[144, 169, 196, 225],
        [256, 289, 324, 361],
        [400, 441, 484, 529]]], dtype=int32)
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
(3) NumPy二元函数:
函数说明
+ - * / **两个数组各元素进行对应运算
np.maximum(x,y) np.fmax()
np.minimum(x,y) np.fmin()
元素级的最大/最小值计算
np.mod(x,y)元素的模运算
np.copysign(x,y)将数组y中各元素值的符号赋值给数组x对应元素
> < >= <= == !=算术比较,产生布尔型数组
>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.sqrt(a)
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> b
array([[[0.        , 1.        , 1.41421356, 1.73205081],
        [2.        , 2.23606798, 2.44948974, 2.64575131],
        [2.82842712, 3.        , 3.16227766, 3.31662479]],

       [[3.46410162, 3.60555128, 3.74165739, 3.87298335],
        [4.        , 4.12310563, 4.24264069, 4.35889894],
        [4.47213595, 4.58257569, 4.69041576, 4.79583152]]])
>>>
>>> np.maximum(a,b)
array([[[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.]],

       [[12., 13., 14., 15.],
        [16., 17., 18., 19.],
        [20., 21., 22., 23.]]])
>>> b[0,0,1]=100
>>> b
array([[[  0.        , 100.        ,   1.41421356,   1.73205081],
        [  2.        ,   2.23606798,   2.44948974,   2.64575131],
        [  2.82842712,   3.        ,   3.16227766,   3.31662479]],

       [[  3.46410162,   3.60555128,   3.74165739,   3.87298335],
        [  4.        ,   4.12310563,   4.24264069,   4.35889894],
        [  4.47213595,   4.58257569,   4.69041576,   4.79583152]]])
>>> a > b
array([[[False, False,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]],

       [[ True,  True,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值